2023年湖北省荊州開發區灘橋高級中學數學高一第二學期期末教學質量檢測模擬試題含解析_第1頁
2023年湖北省荊州開發區灘橋高級中學數學高一第二學期期末教學質量檢測模擬試題含解析_第2頁
2023年湖北省荊州開發區灘橋高級中學數學高一第二學期期末教學質量檢測模擬試題含解析_第3頁
2023年湖北省荊州開發區灘橋高級中學數學高一第二學期期末教學質量檢測模擬試題含解析_第4頁
2023年湖北省荊州開發區灘橋高級中學數學高一第二學期期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知點和點,是直線上的一點,則的最小值是()A. B. C. D.2.已知各項均為正數的等比數列,若,則的值為()A.-4 B.4 C. D.03.已知函數的定義域為,當時,,且對任意的實數,等式恒成立,若數列滿足,且,則的值為()A.4037 B.4038 C.4027 D.40284.△ABC的內角A,B,C的對邊分別為a,b,c,已知asinA-bsinB=4csinC,cosA=-,則=A.6 B.5 C.4 D.35.《張丘建算經》中女子織布問題為:某女子善于織布,一天比一天織得快,且從第2天開始,每天比前一天多織相同量的布,已知第一天織5尺布,一月(按30天計)共織390尺布,則從第2天起每天比前一天多織()尺布.A. B. C. D.6.在中,已知a,b,c分別為,,所對的邊,且a,b,c成等差數列,,,則()A. B. C. D.7.已知圓與交于兩點,其中一交點的坐標為,兩圓的半徑之積為9,軸與直線都與兩圓相切,則實數()A. B. C. D.8.設定義域為的奇函數是增函數,若對恒成立,則實數的取值范圍是()A. B. C. D.9.若直線:與直線:平行,則的值為()A.1 B.1或2 C.-2 D.1或-210.經過平面α外兩點,作與α平行的平面,則這樣的平面可以作()A.1個或2個B.0個或1個C.1個D.0個二、填空題:本大題共6小題,每小題5分,共30分。11.已知正數、滿足,則的最大值為__________.12.計算:________.13.已知直線與軸、軸相交于兩點,點在圓上移動,則面積的最大值和最小值之差為.14.若函數,則__________.15.已知為等差數列,為其前項和,若,則,則______.16.已知向量、滿足,,且,則與的夾角為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量,向量.(1)求向量的坐標;(2)當為何值時,向量與向量共線.18.若,解關于的不等式.19.如圖,邊長為2的正方形中.(1)點是的中點,點是的中點,將、分別沿,折起,使,兩點重合于點,求證:;(2)當時,將、分別沿,折起,使,兩點重合于點,求三棱錐的體積.20.設數列是等差數列,其前n項和為;數列是等比數列,公比大于0,其前項和為.已知,,,.(1)求數列和數列的通項公式;(2),求正整數n的值.21.已知函數f(1)求fx(2)若fx<m+2在x∈0,

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

求出A關于直線l:的對稱點為C,則BC即為所求【詳解】如下圖所示:點,關于直線l:的對稱點為C(0,2),連接BC,此時的最小值為故選D.【點睛】本題考查的知識點是兩點間距離公式的應用,難度不大,屬于中檔題.2、B【解析】

根據等比中項可得,再根據,即可求出結果.【詳解】由等比中項可知,,又,所以.故選:B.【點睛】本題主要考查了等比中項的性質,屬于基礎題.3、A【解析】

由,對任意的實數,等式恒成立,且,得到an+1=an+2,由等差數列的定義求得結果.【詳解】∵,∴f(an+1)f(﹣2﹣an)=1,∵f(x)?f(y)=f(x+y)恒成立,∴令x=﹣1,y=0,則f(﹣1)?f(0)=f(﹣1),∵當x<0時,f(x)>1,∴f(﹣1)≠0,則f(0)=1,則f(an+1)f(﹣2﹣an)=1,等價為f(an+1)f(﹣2﹣an)=f(0),即f(an+1﹣2﹣an)=f(0),則an+1﹣2﹣an=0,∴an+1﹣an=2.∴數列{an}是以1為首項,以2為公差的等差數列,首項a1=f(0)=1,∴an=1+2(n﹣1)=2n﹣1,∴=2×2019﹣1=4037.故選:A【點睛】本題主要考查數列與函數的綜合運用,根據抽象函數的關系結合等差數列的通項公式建立方程是解決本題的關鍵,屬于中檔題.4、A【解析】

利用余弦定理推論得出a,b,c關系,在結合正弦定理邊角互換列出方程,解出結果.【詳解】詳解:由已知及正弦定理可得,由余弦定理推論可得,故選A.【點睛】本題考查正弦定理及余弦定理推論的應用.5、B【解析】由題可知每天織的布的多少構成等差數列,其中第一天為首項,一月按30天計可得,從第2天起每天比前一天多織的即為公差.又,解得.故本題選B.6、B【解析】

利用成等差數列可得,再利用余弦定理構造的結構再代入求得即可.【詳解】由成等差數列可得,由余弦定理有,即,解得,即.故選:B【點睛】本題主要考查了等差中項與余弦定理的運算,需要根據題意構造與的結構代入求解.屬于中檔題.7、A【解析】

根據圓的切線性質可知連心線過原點,故設連心線,再代入,根據方程的表達式分析出是方程的兩根,再根據韋達定理結合兩圓的半徑之積為9求解即可.【詳解】因為兩切線均過原點,有對稱性可知連心線所在的直線經過原點,設該直線為,設兩圓與軸的切點分別為,則兩圓方程為:,因為圓與交于兩點,其中一交點的坐標為.所以①,②.又兩圓半徑之積為9,所以③聯立①②可知是方程的兩根,化簡得,即.代入③可得,由題意可知,故.因為的傾斜角是連心線所在的直線的傾斜角的兩倍.故,故.故選:A【點睛】本題主要考查了圓的方程的綜合運用,需要根據題意列出對應的方程,結合韋達定理以及直線的斜率關系求解.屬于難題.8、A【解析】

由題意可得,即為,可得恒成立,討論是否為0,結合換元法和基本不等式,可得所求范圍.【詳解】解:由題意可得,即為,可得恒成立,當時,上式顯然成立;當時,可得,設,,可得,由,可得,可得,即,故選:A.【點睛】本題主要考查函數的奇偶性和單調性的運用,考查不等式恒成立問題解法,注意運用參數分離和換元法,考查化簡運算能力,屬于中檔題.9、A【解析】試題分析:因為直線:與直線:平行,所以或-2,又時兩直線重合,所以.考點:兩條直線平行的條件.點評:此題是易錯題,容易選C,其原因是忽略了兩條直線重合的驗證.10、B【解析】若平面α外的兩點所確定的直線與平面α平行,則過該直線與平面α平行的平面有且只有一個;若平面α外的兩點所確定的直線與平面α相交,則過該直線的平面與平面α平行的平面不存在;故選B.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

直接利用均值不等式得到答案.【詳解】,當即時等號成立.故答案為:【點睛】本題考查了均值不等式,意在考查學生的計算能力.12、3【解析】

直接利用數列的極限的運算法則求解即可.【詳解】.故答案為:3【點睛】本題考查數列的極限的運算法則,考查計算能力,屬于基礎題.13、15【解析】

解:設作出與已知直線平行且與圓相切的直線,

切點分別為,如圖所示

則動點C在圓上移動時,若C與點重合時,

△ABC面積達到最小值;而C與點重合時,△ABC面積達到最大值

∵直線3x+4y?12=0與x軸、y軸相交于A(4,0)、B(0,3)兩點

可得∴△ABC面積的最大值和最小值之差為

其中分別為點、點到直線AB的距離

∵是圓(x?5)2+(y?6)2=9的兩條平行切線與圓的切點

∴點、點到直線AB的距離之差等于圓的直徑,即

因此△ABC面積的最大值和最小值之差為

故答案為:1514、【解析】

根據分段函數的解析式先求,再求即可.【詳解】因為,所以.【點睛】本題主要考查了分段函數求值問題,解題的關鍵是將自變量代入相應范圍的解析式中,屬于基礎題.15、【解析】

利用等差中項的性質求出的值,再利用等差中項的性質求出的值.【詳解】由等差中項的性質可得,得,由等差中項的性質得,.故答案為:.【點睛】本題考查等差數列中項的計算,充分利用等差中項的性質進行計算是解題的關鍵,考查計算能力,屬于基礎題.16、【解析】

直接應用數量積的運算,求出與的夾角.【詳解】設向量、的夾角為;∵,∴,∵,∴.故答案為:.【點睛】本題考查向量的夾角計算,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】試題分析:(1)根據向量坐標運算公式計算;(2)求出的坐標,根據向量共線與坐標的關系列方程解出k;試題解析:(1)(2),∵與共線,∴∴18、當0<a<1時,原不等式的解集為,當a<0時,原不等式的解集為;當a=0時,原不等式的解集為?.【解析】

試題分析:(1),利用,可得,分三種情況對討論的范圍:0<a<1,a<0,a=0,分別求得相應情況下的解集即可.試題解析:不等式>1可化為>0.因為a<1,所以a-1<0,故原不等式可化為<0.故當0<a<1時,原不等式的解集為,當a<0時,原不等式的解集為,當a=0時,原不等式的解集為?.19、(1)證明見解析;(2)【解析】

(1)折疊過程中,,保持不變,即,,由此可得線面垂直,從而有線線垂直;(2)由(1)知面,即是三棱錐的高,求出底面積可得體積.【詳解】(1)證明:由,.可得:,,,面又面(2)解:在三棱錐中,,,面,由,,可得.【點睛】本題考查證明線線垂直,考查求棱錐的體積.立體幾何中證明線線垂直,通常由線面垂直的性質定理給出,即先證線面垂直,而證線面垂直又必須證明線線垂直,注意線線垂直與線面垂直的轉化.三棱錐中任何一個面都可以當作底面,因此一般尋找高易得的面為底面,常用換底法求體積.20、(1);;(2)n的值為1.【解析】

(1)根據等比數列與等差數列,分別設公比與公差再用基本量法求解即可.(2)分別利用等差等比數列的求和公式求解得與,再代入整理求解二次方程即可.【詳解】解:(1)設等比數列的公比為q,由,,可得.∵,可得.故;設等差數列的公差為d,由,得,由,得,∴.故;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論