




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
AnalysisofFinancialTimeSeriesFanQingzhuPekingUniversityAnalysisofFinancialTimeSeriesFinancialtimeseries(FTS)analysisisconcernedwiththeoryandpracticeofassetvaluationovertime.ComparisonwithotherT.S.analysis?Highlyrelated,butwithsomeaddeduncertainty.FTSmustdealwiththeever-changingbusiness&economicenvironmentandthefactthatvolatilityisnotdirectlyobserved.Objectiveofthecoursetolearnwaystogetfinancialinformationfromwebdirectlyandtoprocesstheinformation.toprovidesomebasicknowledgeoffinancialtimeseriesdatasuchasskewness,heavytails,andmeasureofdependencebetweenassetreturnstointroducesomestatisticaltools&econometricmodelsusefulforanalyzingtheseseries.togainexperienceinanalyzingFTStointroducerecentdevelopmentsinnancialeconometricsandtheirapplications,e.g.,high-frequencyfinanceObjectiveofthecoursetostudymethodsforassessingmarketrisk,creditrisk,andexpectedloss.ThemethodsdiscussedincludeValueatRisk,expectedshortfall,andtaildependence.toanalyzehigh-dimensionalassetreturns,includingco-movementExamplesoffinancialtimeseries1.DailylogreturnsofApplestock:2004to2013(10years)2.TheVIXindex3.CDSspreads:Daily3-yearCDSspreadsofJPMorganfromJuly20,2004toSeptember19,2014.4.QuarterlyearningsofCoca-ColaCompany:1983-2009Seasonaltimeseriesusefulinearningforecasts/pricingweatherrelatedderivatives(e.g.energy)/modelingintradaybehaviorofassetreturns.Examplesoffinancialtimeseries5.USmonthlyinterestrates(3m&6mTreasurybills)Relationsbetweenthetwoseries?Termstructureofinterestrates6.ExchangeratebetweenUSDollarvsEuroFixedincome,hedging,carrytrade7.SizeofinsuranceclaimsValuesofreinsuranceclaims(1000Krone)thatexceeded500from1972to1992.8.High-frequencynancialdata:Tick-by-tickdataofCaterpillarsstock:January04,2010.OutlineofthecourseReturns&theircharacteristics:empiricalanalysis(summarystatistics)Simplelineartimeseriesmodels&theirapplicationsUnivariatevolatilitymodels&theirimplicationsNonlinearityinlevelandvolatilityNeuralnetwork&non-parametricmethodsHigh-frequencynancialdataandmarketmicro-structureContinuous-timemodelsandderivativepricingOutlineofthecourseValueatRisk,extremevaluetheoryandexpectedshortfall(alsoknownasconditionalVaR)Analysisofmultipleassetreturns:factormodels,dynamicandcrossdependence1.1AssetReturnsLetPtbethepriceofanassetattimet,andassumenodividend.One-periodsimplereturn:GrossreturnSimplereturn:Multiperiodsimplereturn:Grossreturn1.1AssetReturnsThek-periodsimplenetreturnisExample:TablebelowgivesfivedailyclosingpricesofApplestockinDecember2011.The1-daygrossreturnofholdingthestockfrom12/8to12/91+Rt=393.62/390.66=1.0076sothatthedailysimplereturnis0.76%,whichis(393.62-390.66)/390.66.Timeintervalisimportant!Defaultisoneyear.1.1AssetReturnsAnnualized(average)return:Anapproximation:Continuouslycompounding:Illustrationofthepowerofcompounding(int.rate10%perannum)1.1AssetReturnsGenerally,thenetvalueofcontinuouslycompounding
whereristheinterestrateperannum,Cistheinitialcapital,nisthenumberofyears,andexpistheexponentialfunction.1.1AssetReturnsPresentvalue:Continuouslycompounded(orlog)returnWhereMultiperiodlogreturn:1.1AssetReturnsExample:ConsideragaintheApplestockprice.1.Whatisthelogreturnfrom12/8to12/9:A:rt=ln(393.62)-
ln(390.66)=7.5%.2.Whatisthelogreturnfromday12/2to12/9?A:rt(4)=ln(393.62)-ln(389.7)=1%.Portfolioreturn:Nassets
1.1AssetReturnsExample:AninvestorholdsstocksofIBM,MicrosoftandCiti-Group.Assumethathercapitalallocationis30%,30%and40%.UsethemonthlysimplereturnsinTable1.2ofthetext.Whatisthemeansimplereturnofherstockportfolio?Answer:E(Rt)=0.3*1.35+0:3*2.62+0:4*1.17=1.66.Dividendpayment:Excessreturn:(adjustingforrisk)wherer0tdenotesthelogreturnofareferenceasset(e.g.risk-freeinterestrate).
1.1AssetReturnsRelationship:Ifthereturnsareinpercentage,thenTemporalaggregationofthereturnsproducesThesetworelationsareimportantinpractice,e.g.obtainannualreturnsfrommonthlyreturns.
1.1AssetReturnsExample:Ifthemonthlylogreturnsofanassetare4.46%,-7.34%and10.77%,thenwhatisthecorrespondingquarterlylogreturn?Answer:
4.46-
7.34+10.77=7.89%.Example:Ifthemonthlysimplereturnsofanassetare4.46%,-7.34%and10.77%,thenwhatisthecorrespondingquarterlysimplereturn?Answer:R=(1+0.0446)(1-0.0734)(1+0.1077)-1=1.0721-1=0.0721=7.21%
1.2DistributionalpropertiesofreturnsKey:WhatisthedistributionofSometheoreticalproperties:MomentsofarandomvariableXwithdensityf(x):l-thmomentFirstmoment:meanorexpectationofX.l-thcentralmoment2ndc.m.:VarianceofX.1.2DistributionalpropertiesofreturnsSkewness(symmetry)andkurtosis(fat-tails)K(x)-
3:Excesskurtosis.Whyarethemeanandvarianceofreturnsimportant?Theyareconcernedwithlong-termreturnandrisk,respectively.Whyisreturnsymmetryofinterestinfinancialstudy?Symmetryhasimportantimplicationsinholdingshortorlongfinancialpositionsandinriskmanagement.1.2DistributionalpropertiesofreturnsWhyiskurtosisimportant?Relatedtovolatilityforecasting,eciencyinestimationandtests,etc.Highkurtosisimpliesheavy(orlong)tailsindistribution.Estimation:Data:samplemean:samplevariance:sampleskewness:samplekurtosis:1.2DistributionalpropertiesofreturnsUndernormalityassumption,Somesimpletestsfornormality(forlargeT).1.Testforsymmetry:ifnormalityholds.Decisionrule:RejectHoofasymmetricdistributionif|S*|>Za/2orp-valueislessthana.2.Testfortailthickness:1.2Distributionalpropertiesofreturnsifnormalityholds.Decisionrule:RejectHoofnormaltailsif|K*|>Za/2orp-valueislessthana.3.Ajointtest(Jarque-Beratest):ifnormalityholds,wherechi-squre(df=2)denotesachi-squareddistributionwith2degreesoffreedomDecisionrule:RejectHoofnormalityiforp-valueislessthana.EmpiricalpropertiesofreturnsDatasources:1.2DistributionalpropertiesofreturnsCourseweb:/ruey.tsay/teaching/bs41202/sp2015/CRSP:CenterforResearchinSecurityPrices(WhartonWRDS)/Variouswebsites,e.g.FederalReserveBankatSt.Louis/fred2/Datasetsofthetextbook:/ruey.tsay/teaching/fts3/1.2DistributionalpropertiesofreturnsEmpiricaldistofassetreturnstendstobeskewedtotheleftwithheavytailsandhasahigherpeakthannormaldist.SeeTable1.2ofthetext.DemonstrationofDataAnalysis1.2DistributionalpropertiesofreturnsNormalandlognormaldists
:YislognormalifX=ln(Y)isnormal.IfthenY=exp(X)islognormalwithmeanandvarianceConversely,ifYislognormalwithmeanandvariance,thenX=ln(Y)isnormalwithmeanandvariance1.2DistributionalpropertiesofreturnsApplication:Ifthelogreturnofanassetisnormallydistributedwithmean0.0119andstandarddeviation0.0663,thenwhatisthemeanandstandarddeviationofitssimplereturn?Answer:Solvethisproblemintwosteps.Step1:Basedonthepriorresults,themeanandvarianceofYt=exp(rt)areStep2:SimplereturnisTherefore,1.2DistributionalpropertiesofreturnsRemark:SeethemonthlyIBMstockreturnsinTable1.2.Likelihoodfunction(forselfstudy)Finally,itpaystostudythelikelihoodfunctionofreturnsdiscussedinChapter1.Basicconcept:Jointdist=Conditionaldist*Marginaldist,i.e.1.2DistributionalpropertiesofreturnsFortwoconsecutivereturnsr1andr2,wehaveForthreereturnsr1,r2andr3,byrepeatedapplicationIngeneral,wehave1.2DistributionalpropertiesofreturnsFortwoconsecutivereturnsr1andr2,wehaveForthreereturnsr1,r2andr3,byrepeatedapplicationIngeneral,wehave1.2DistributionalpropertiesofreturnsIfisnormalwithmeanmutandvariancesigmatsqure,
thenlikelihoodfunctionbecomesForsimplicity,iff(r1)isignored,thenthelikelihoodfunctionbecomesThisistheconditionallikelihoodfunctionofthereturnsundernormality.1.2DistributionalpropertiesofreturnsQuantifyingdependence:ConsidertwovariablesX
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 健身器材行業產業鏈價值鏈分析考核試卷
- 古代雕塑考試題及答案
- 國稅調研面試題及答案
- javaswitch面試題及答案
- 網絡大賽試題及答案
- 麥當勞面試題及答案
- 家用紡織品市場供應鏈的動態風險管理機制考核試卷
- 跳舞小熊測試題及答案
- 城市大腦筆試題及答案
- 2025年福建省中考英語真題(解析版)
- 行車安全風險點告知牌
- 大學生勞動教育教程全套PPT完整教學課件
- 鐵路工程施工監理規劃
- 嬰幼兒語言發育篩查量表優質資料
- 《屹立在世界的東方》示范課教學課件【人教部編版小學道德與法治五年級下冊】
- GB/T 16924-2008鋼件的淬火與回火
- 基礎護理學:肌內注射
- 應急值守專題培訓課件
- DB23T 1318-2020 黑龍江省建設施工現場安全生產標準化實施標準
- 新加坡公司法-英文版
- 醫院管理腎內科腹膜透析護理常規
評論
0/150
提交評論