




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知兩組數據,2、3、4和3、4、5,那么下列說法正確的是()A.中位數不相等,方差不相等B.平均數相等,方差不相等C.中位數不相等,平均數相等D.平均數不相等,方差相等2.已知⊙O的半徑為5,弦AB=6,P是AB上任意一點,點C是劣弧的中點,若△POC為直角三角形,則PB的長度()A.1 B.5 C.1或5 D.2或43.如圖,在平面直角坐標系中,⊙P的圓心坐標是(3,a)(a>3),半徑為3,函數y=x的圖象被⊙P截得的弦AB的長為4,則a的值是()A.4 B.3+ C.3 D.4.2019年4月份,某市市區一周空氣質量報告中某項污染指數的數據是:31,35,31,34,30,32,31,這組數據的中位數、眾數分別是()A.32,31 B.31,32 C.31,31 D.32,355.已知反比例函數y=的圖象在一、三象限,那么直線y=kx﹣k不經過第()象限.A.一 B.二 C.三 D.四6.九年級(2)班同學根據興趣分成五個小組,各小組人數分布如圖所示,則在扇形圖中第一小組對應的圓心角度數是()A. B. C. D.7.點A(m﹣4,1﹣2m)在第四象限,則m的取值范圍是()A.m> B.m>4C.m<4 D.<m<48.港珠澳大橋是連接香港、珠海、澳門的超大型跨海通道,全長約55000米,把55000用科學記數法表示為()A.55×103 B.5.5×104 C.5.5×105 D.0.55×1059.化簡:-,結果正確的是()A.1 B. C. D.10.如圖,在△ABC中,∠C=90°,點D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數為()A.15° B.55° C.65° D.75°11.下列運算正確的是()A. B. C. D.12.下列各式中,互為相反數的是()A.和 B.和 C.和 D.和二、填空題:(本大題共6個小題,每小題4分,共24分.)13.把多項式a3-2a2+a分解因式的結果是14.已知ba=215.已知:如圖,AB是⊙O的直徑,弦EF⊥AB于點D,如果EF=8,AD=2,則⊙O半徑的長是_____.16.如圖,在平面直角坐標系中,四邊形OABC是邊長為2的正方形,頂點A、C分別在x軸、y軸的正半軸上,點Q在對角線OB上,若OQ=OC,則點Q的坐標為_______.17.要使式子有意義,則的取值范圍是__________.18.如圖,點A在反比例函數y=(x>0)上,以OA為邊作正方形OABC,邊AB交y軸于點P,若PA:PB=1:2,則正方形OABC的面積=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AB是⊙O的直徑,BE是弦,點D是弦BE上一點,連接OD并延長交⊙O于點C,連接BC,過點D作FD⊥OC交⊙O的切線EF于點F.(1)求證:∠CBE=∠F;(2)若⊙O的半徑是2,點D是OC中點,∠CBE=15°,求線段EF的長.20.(6分)已知,數軸上三個點A、O、P,點O是原點,固定不動,點A和B可以移動,點A表示的數為,點B表示的數為.(1)若A、B移動到如圖所示位置,計算的值.(2)在(1)的情況下,B點不動,點A向左移動3個單位長,寫出A點對應的數,并計算.(3)在(1)的情況下,點A不動,點B向右移動15.3個單位長,此時比大多少?請列式計算.21.(6分)如圖,∠AOB=45°,點M,N在邊OA上,點P是邊OB上的點.(1)利用直尺和圓規在圖1確定點P,使得PM=PN;(2)設OM=x,ON=x+4,①若x=0時,使P、M、N構成等腰三角形的點P有個;②若使P、M、N構成等腰三角形的點P恰好有三個,則x的值是____________.22.(8分)先化簡,再求值:(m+2﹣)?,其中m=﹣.23.(8分)豆豆媽媽用小米運動手環記錄每天的運動情況,下面是她6天的數據記錄(不完整):(1)4月5日,4月6日,豆豆媽媽沒來得及作記錄,只有手機圖片,請你根據圖片數據,幫她補全表格.(2)豆豆利用自己學習的統計知識,把媽媽步行距離與燃燒脂肪情況用如下統計圖表示出來,請你根據圖中提供的信息寫出結論:.(寫一條即可)(3)豆豆還幫媽媽分析出步行距離和卡路里消耗數近似成正比例關系,豆豆媽媽想使自己的卡路里消耗數達到250千卡,預估她一天步行距離為公里.(直接寫出結果,精確到個位)24.(10分)如圖,某次中俄“海上聯合”反潛演習中,我軍艦A測得潛艇C的俯角為30°.位于軍艦A正上方1000米的反潛直升機B側得潛艇C的俯角為68°.試根據以上數據求出潛艇C離開海平面的下潛深度.(結果保留整數.參考數據:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,≈1.7)25.(10分)如圖,,,,求證:。26.(12分)在△ABC中,AB=AC,以AB為直徑的⊙O交AC于點E,交BC于點D,P為AC延長線上一點,且∠PBC=∠BAC,連接DE,BE.(1)求證:BP是⊙O的切線;(2)若sin∠PBC=,AB=10,求BP的長.27.(12分)在大課間活動中,體育老師隨機抽取了七年級甲、乙兩班部分女學生進行仰臥起坐的測試,并對成績進行統計分析,繪制了頻數分布表和統計圖,請你根據圖表中的信息完成下列問題:分組頻數頻率第一組(0≤x<15)30.15第二組(15≤x<30)6a第三組(30≤x<45)70.35第四組(45≤x<60)b0.20(1)頻數分布表中a=_____,b=_____,并將統計圖補充完整;如果該校七年級共有女生180人,估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有多少人?已知第一組中只有一個甲班學生,第四組中只有一個乙班學生,老師隨機從這兩個組中各選一名學生談心得體會,則所選兩人正好都是甲班學生的概率是多少?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
分別利用平均數以及方差和中位數的定義分析,進而求出答案.【詳解】2、3、4的平均數為:(2+3+4)=3,中位數是3,方差為:[(2﹣3)2+(3﹣3)2+(3﹣4)2]=;3、4、5的平均數為:(3+4+5)=4,中位數是4,方差為:[(3﹣4)2+(4﹣4)2+(5﹣4)2]=;故中位數不相等,方差相等.故選:D.【點睛】本題考查了平均數、中位數、方差的意義,解答本題的關鍵是熟練掌握這三種數的計算方法.2、C【解析】
由點C是劣弧AB的中點,得到OC垂直平分AB,求得DA=DB=3,根據勾股定理得到OD==1,若△POC為直角三角形,只能是∠OPC=90°,則根據相似三角形的性質得到PD=2,于是得到結論.【詳解】∵點C是劣弧AB的中點,∴OC垂直平分AB,∴DA=DB=3,∴OD=,若△POC為直角三角形,只能是∠OPC=90°,則△POD∽△CPD,∴,∴PD2=4×1=4,∴PD=2,∴PB=3﹣2=1,根據對稱性得,當P在OC的左側時,PB=3+2=5,∴PB的長度為1或5.故選C.【點睛】考查了圓周角,弧,弦的關系,勾股定理,垂徑定理,正確左側圖形是解題的關鍵.3、B【解析】試題解析:作PC⊥x軸于C,交AB于D,作PE⊥AB于E,連結PB,如圖,∵⊙P的圓心坐標是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D點坐標為(3,3),∴CD=3,∴△OCD為等腰直角三角形,∴△PED也為等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故選B.考點:1.垂徑定理;2.一次函數圖象上點的坐標特征;3.勾股定理.4、C【解析】分析:找中位數要把數據按從小到大的順序排列,位于最中間的一個數(或兩個數的平均數)為中位數;眾數是一組數據中出現次數最多的數據,注意眾數可以不只一個.解答:解:從小到大排列此數據為:30、1、1、1、32、34、35,數據1出現了三次最多為眾數,1處在第4位為中位數.所以本題這組數據的中位數是1,眾數是1.故選C.5、B【解析】
根據反比例函數的性質得k>0,然后根據一次函數的進行判斷直線y=kx-k不經過的象限.【詳解】∵反比例函數y=的圖象在一、三象限,∴k>0,∴直線y=kx﹣k經過第一、三、四象限,即不經過第二象限.故選:B.【點睛】考查了待定系數法求反比例函數的解析式:設出含有待定系數的反比例函數解析式y=(k為常數,k≠0);把已知條件(自變量與函數的對應值)代入解析式,得到待定系數的方程;解方程,求出待定系數;寫出解析式.也考查了反比例函數與一次函數的性質.6、C【解析】試題分析:由題意可得,第一小組對應的圓心角度數是:×360°=72°,故選C.考點:1.扇形統計圖;2.條形統計圖.7、B【解析】
根據第四象限內點的橫坐標是正數,縱坐標是負數列出不等式組,然后求解即可.【詳解】解:∵點A(m-1,1-2m)在第四象限,
∴解不等式①得,m>1,
解不等式②得,m>所以,不等式組的解集是m>1,
即m的取值范圍是m>1.
故選B.【點睛】本題考查各象限內點的坐標的符號特征以及解不等式,記住各象限內點的坐標的符號是解決的關鍵,四個象限的符號特點分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8、B【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】55000是5位整數,小數點向左移動4位后所得的數即可滿足科學記數法的要求,由此可知10的指數為4,所以,55000用科學記數法表示為5.5×104,故選B.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.9、B【解析】
先將分母進行通分,化為(x+y)(x-y)的形式,分子乘上相應的分式,進行化簡.【詳解】【點睛】本題考查的是分式的混合運算,解題的關鍵就是熟練掌握運算規則.10、D【解析】
根據鄰補角定義可得∠ADE=15°,由平行線的性質可得∠A=∠ADE=15°,再根據三角形內角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【點睛】本題考查了平行線的性質、三角形內角和定理等,熟練掌握平行線的性質以及三角形內角和定理是解題的關鍵.11、D【解析】
根據冪的乘方:底數不變,指數相乘.合并同類項即可解答.【詳解】解:A、B兩項不是同類項,所以不能合并,故A、B錯誤,C、D考查冪的乘方運算,底數不變,指數相乘.,故D正確;【點睛】本題考查冪的乘方和合并同類項,熟練掌握運算法則是解題的關鍵.12、A【解析】
根據乘方的法則進行計算,然后根據只有符號不同的兩個數互為相反數,可得答案.【詳解】解:A.=9,=-9,故和互為相反數,故正確;B.=9,=9,故和不是互為相反數,故錯誤;C.=-8,=-8,故和不是互為相反數,故錯誤;D.=8,=8故和不是互為相反數,故錯誤.故選A.【點睛】本題考查了有理數的乘方和相反數的定義,關鍵是掌握有理數乘方的運算法則.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、.【解析】要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續分解因式.因此,.14、3【解析】
依據ba=23可設a=3k,b=2【詳解】∵ba∴可設a=3k,b=2k,∴aa-b故答案為3.【點睛】本題主要考查了比例的性質及見比設參的數學思想,組成比例的四個數,叫做比例的項.兩端的兩項叫做比例的外項,中間的兩項叫做比例的內項.15、1.【解析】試題解析:連接OE,如下圖所示,則:OE=OA=R,∵AB是⊙O的直徑,弦EF⊥AB,∴ED=DF=4,∵OD=OA-AD,∴OD=R-2,在Rt△ODE中,由勾股定理可得:OE2=OD2+ED2,∴R2=(R-2)2+42,∴R=1.考點:1.垂徑定理;2.解直角三角形.16、(2,2)【解析】如圖,過點Q作QD⊥OA于點D,∴∠QDO=90°.∵四邊形OABC是正方形,且邊長為2,OQ=OC,∴∠QOA=45°,OQ=OC=2,∴△ODQ是等腰直角三角形,∴OD=OQ=22=2∴點Q的坐標為(217、【解析】
根據二次根式被開方數必須是非負數的條件可得關于x的不等式,解不等式即可得.【詳解】由題意得:2-x≥0,解得:x≤2,故答案為x≤2.18、1.【解析】
根據題意作出合適的輔助線,然后根據正方形的性質和反比例函數的性質,相似三角形的判定和性質、勾股定理可以求得AB的長.【詳解】解:由題意可得:OA=AB,設AP=a,則BP=2a,OA=3a,設點A的坐標為(m,),作AE⊥x軸于點E.∵∠PAO=∠OEA=90°,∠POA+∠AOE=90°,∠AOE+∠OAE=90°,∴∠POA=∠OAE,∴△POA∽△OAE,∴=,即=,解得:m=1或m=﹣1(舍去),∴點A的坐標為(1,3),∴OA=,∴正方形OABC的面積=OA2=1.故答案為1.【點睛】本題考查了反比例函數圖象點的坐標特征、正方形的性質,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)詳見解析;(1)【解析】
(1)連接OE交DF于點H,由切線的性質得出∠F+∠EHF=90°,由FD⊥OC得出∠DOH+∠DHO=90°,依據對頂角的定義得出∠EHF=∠DHO,從而求得∠F=∠DOH,依據∠CBE=∠DOH,從而即可得證;(1)依據圓周角定理及其推論得出∠F=∠COE=1∠CBE=30°,求出OD的值,利用銳角三角函數的定義求出OH的值,進一步求得HE的值,利用銳角三角函數的定義進一步求得EF的值.【詳解】(1)證明:連接OE交DF于點H,∵EF是⊙O的切線,OE是⊙O的半徑,∴OE⊥EF.∴∠F+∠EHF=90°.∵FD⊥OC,∴∠DOH+∠DHO=90°.∵∠EHF=∠DHO,∴∠F=∠DOH.∵∠CBE=∠DOH,∴(1)解:∵∠CBE=15°,∴∠F=∠COE=1∠CBE=30°.∵⊙O的半徑是,點D是OC中點,∴.在Rt△ODH中,cos∠DOH=,∴OH=1.∴.在Rt△FEH中,∴【點睛】本題主要考查切線的性質及直角三角形的性質、圓周角定理及三角函數的應用,掌握圓周角定理和切線的性質是解題的關鍵.20、(1)a+b的值為2;(2)a的值為3,b|a|的值為3;(1)b比a大27.1.【解析】
(1)根據數軸即可得到a,b數值,即可得出結果.(2)由B點不動,點A向左移動1個單位長,可得a=3,b=2,即可求解.(1)點A不動,點B向右移動15.1個單位長,所以a=10,b=17.1,再b-a即可求解.【詳解】(1)由圖可知:a=10,b=2,∴a+b=2故a+b的值為2.(2)由B點不動,點A向左移動1個單位長,可得a=3,b=2∴b|a|=b+a=23=3故a的值為3,b|a|的值為3.(1)∵點A不動,點B向右移動15.1個單位長∴a=10,b=17.1∴ba=17.1(10)=27.1故b比a大27.1.【點睛】本題主要考查了數軸,關鍵在于數形結合思想.21、(1)見解析;(2)①1;②:x=0或x=4﹣4或4<x<4;【解析】
(1)分別以M、N為圓心,以大于MN為半徑作弧,兩弧相交與兩點,過兩弧交點的直線就是MN的垂直平分線;(2)①分為PM=PN,MP=MN,NP=NM三種情況進行判斷即可;②如圖1,構建腰長為4的等腰直角△OMC,和半徑為4的⊙M,發現M在點D的位置時,滿足條件;如圖4,根據等腰三角形三種情況的畫法:分別以M、N為圓心,以MN為半徑畫弧,與OB的交點就是滿足條件的點P,再以MN為底邊的等腰三角形,通過畫圖發現,無論x取何值,以MN為底邊的等腰三角形都存在一個,所以只要滿足以MN為腰的三角形有兩個即可.【詳解】解:(1)如圖所示:(2)①如圖所示:故答案為1.②如圖1,以M為圓心,以4為半徑畫圓,當⊙M與OB相切時,設切點為C,⊙M與OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴當M與D重合時,即時,同理可知:點P恰好有三個;如圖4,取OM=4,以M為圓心,以OM為半徑畫圓.則⊙M與OB除了O外只有一個交點,此時x=4,即以∠PMN為頂角,MN為腰,符合條件的點P有一個,以N圓心,以MN為半徑畫圓,與直線OB相離,說明此時以∠PNM為頂角,以MN為腰,符合條件的點P不存在,還有一個是以NM為底邊的符合條件的點P;點M沿OA運動,到M1時,發現⊙M1與直線OB有一個交點;∴當時,圓M在移動過程中,則會與OB除了O外有兩個交點,滿足點P恰好有三個;綜上所述,若使點P,M,N構成等腰三角形的點P恰好有三個,則x的值是:x=0或或故答案為x=0或或【點睛】本題考查了等腰三角形的判定,有難度,本題通過數形結合的思想解決問題,解題的關鍵是熟練掌握已知一邊,作等腰三角形的畫法.22、-2(m+3),-1.【解析】
此題的運算順序:先括號里,經過通分,再約分化為最簡,最后代值計算.【詳解】解:(m+2-)?,=,=-,=-2(m+3).把m=-代入,得,原式=-2×(-+3)=-1.23、(1)見解析;(2)步行距離越大,燃燒脂肪越多;(3)1.【解析】
(1)依據手機圖片的中的數據,即可補全表格;(2)依據步行距離與燃燒脂肪情況,即可得出步行距離越大,燃燒脂肪越多;(3)步行距離和卡路里消耗數近似成正比例關系,即可預估她一天步行距離.【詳解】解:(1)由圖可得,4月5日的步行數為7689,步行距離為5.0公里,卡路里消耗為142千卡,燃燒脂肪18克;4月6日的步行數為15638,步行距離為1.0公里,卡路里消耗為234千卡,燃燒脂肪30克;(2)由圖可得,步行距離越大,燃燒脂肪越多;故答案為:步行距離越大,燃燒脂肪越多;(3)由圖可得,步行時每公里約消耗卡路里25千卡,故豆豆媽媽想使自己的卡路里消耗數達到250千卡,預估她一天步行距離為1公里.故答案為:1.【點睛】本題考查的是條形統計圖和折線統計圖的綜合運用.讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據.用樣本去估計總體時,樣本越具有代表性、容量越大,這時對總體的估計也就越精確.24、潛艇C離開海平面的下潛深度約為308米【解析】試題分析:過點C作CD⊥AB,交BA的延長線于點D,則AD即為潛艇C的下潛深度,用銳角三角函數分別在Rt△ACD中表示出CD和在Rt△BCD中表示出BD,利用BD=AD+AB二者之間的關系列出方程求解.試題解析:過點C作CD⊥AB,交BA的延長線于點D,則AD即為潛艇C的下潛深度,根據題意得:∠ACD=30°,∠BCD=68°,設AD=x,則BD=BA+AD=1000+x,在Rt△ACD中,CD===在Rt△BCD中,BD=CD?tan68°,∴325+x=?tan68°解得:x≈100米,∴潛艇C離開海平面的下潛深度為100米.點睛:本題考查了解直角三角形的應用,解題的關鍵是作出輔助線,從題目中找出直角三角形并選擇合適的邊角關系求解.視頻25、見解析【解析】
據∠1=∠2可得∠BAC=∠EAD,再加上條件AB=AE,∠C=∠D可證明△ABC≌△AED.【詳解】證明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD.∵在△ABC和△AED中,∴△ABC≌△AED(AAS).【點睛】此題主要考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、AS
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 稀土發光材料制造企業制定與實施新質生產力項目商業計劃書
- 高效能海洋微生物采樣器行業深度調研及發展項目商業計劃書
- DB32/T 4578.1-2023丙型病毒性肝炎防治技術指南第1部分:質量控制指標
- 八年級地理上冊第二章第三節河流第一課時以外流河為主習題
- 2025年商業服務企業的供應鏈管理與協同運營研究報告
- 小學學年度自然災害應急預案
- 新學期學生心理健康教育教案范文
- 2025年二級鋼項目評估報告
- 幼兒園戶外藝術創作教研計劃
- 小學春季開學典禮主題演講稿
- 電磁場與電磁波期末考試復習試題4套(部分含答案)
- 國開電大《職業素質(職業素質專)》形考1答案
- 過敏性休克的急救及處理流程教材課件(28張)
- 交通協管員勞務外包服務方案
- 滬教牛津版七年級上冊英語全冊教案
- 先天性心臟病患兒護理查房
- 2022年山東省威海市中考數學試題及答案解析
- (完整版)農業主要知識點
- 高級財務管理試題及答案
- 醫院寧群腦高灌注綜合癥監測和防治
- T∕CSEA 1-2018 鋅鋁涂層 技術條件
評論
0/150
提交評論