




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設α,β為兩個平面,則α∥β的充要條件是A.α內有無數條直線與β平行B.α內有兩條相交直線與β平行C.α,β平行于同一條直線D.α,β垂直于同一平面2.執行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關于的判斷條件是()A. B. C. D.3.已知命題,;命題若,則,下列命題為真命題的是()A. B. C. D.4.已知等差數列的公差不為零,且,,構成新的等差數列,為的前項和,若存在使得,則()A.10 B.11 C.12 D.135.已知集合,,則A. B. C. D.6.在中,“”是“為鈍角三角形”的()A.充分非必要條件 B.必要非充分條件 C.充要條件 D.既不充分也不必要條件7.設,則““是“”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必條件8.函數的圖象大致為A. B. C. D.9.已知是雙曲線的兩個焦點,過點且垂直于軸的直線與相交于兩點,若,則的內切圓半徑為()A. B. C. D.10.設且,則下列不等式成立的是()A. B. C. D.11.已知圓M:x2+y2-2ay=0a>0截直線x+y=0A.內切 B.相交 C.外切 D.相離12.甲、乙、丙、丁四人通過抓鬮的方式選出一人周末值班(抓到“值”字的人值班).抓完鬮后,甲說:“我沒抓到.”乙說:“丙抓到了.”丙說:“丁抓到了”丁說:“我沒抓到."已知他們四人中只有一人說了真話,根據他們的說法,可以斷定值班的人是()A.甲 B.乙 C.丙 D.丁二、填空題:本題共4小題,每小題5分,共20分。13.已知全集,,則________.14.若函數的圖像上存在點,滿足約束條件,則實數的最大值為__________.15.設為拋物線的焦點,為上互相不重合的三點,且、、成等差數列,若線段的垂直平分線與軸交于,則的坐標為_______.16.如圖,某地一天從時的溫度變化曲線近似滿足函數,則這段曲線的函數解析式為______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列滿足,等差數列滿足,(1)分別求出,的通項公式;(2)設數列的前n項和為,數列的前n項和為證明:.18.(12分)已知函數.若在定義域內存在,使得成立,則稱為函數的局部對稱點.(1)若a,且a≠0,證明:函數有局部對稱點;(2)若函數在定義域內有局部對稱點,求實數c的取值范圍;(3)若函數在R上有局部對稱點,求實數m的取值范圍.19.(12分)已知拋物線,焦點為,直線交拋物線于兩點,交拋物線的準線于點,如圖所示,當直線經過焦點時,點恰好是的中點,且.(1)求拋物線的方程;(2)點是原點,設直線的斜率分別是,當直線的縱截距為1時,有數列滿足,設數列的前n項和為,已知存在正整數使得,求m的值.20.(12分)如圖,在四棱錐中,底面為菱形,底面,.(1)求證:平面;(2)若直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.21.(12分)設函數.(1)若,求函數的值域;(2)設為的三個內角,若,求的值;22.(10分)如圖,四棱錐中,四邊形是矩形,,,為正三角形,且平面平面,、分別為、的中點.(1)證明:平面;(2)求幾何體的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
本題考查了空間兩個平面的判定與性質及充要條件,滲透直觀想象、邏輯推理素養,利用面面平行的判定定理與性質定理即可作出判斷.【詳解】由面面平行的判定定理知:內兩條相交直線都與平行是的充分條件,由面面平行性質定理知,若,則內任意一條直線都與平行,所以內兩條相交直線都與平行是的必要條件,故選B.【點睛】面面平行的判定問題要緊扣面面平行判定定理,最容易犯的錯誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯誤.2、B【解析】
根據程序框圖,逐步執行,直到的值為63,結束循環,即可得出判斷條件.【詳解】執行框圖如下:初始值:,第一步:,此時不能輸出,繼續循環;第二步:,此時不能輸出,繼續循環;第三步:,此時不能輸出,繼續循環;第四步:,此時不能輸出,繼續循環;第五步:,此時不能輸出,繼續循環;第六步:,此時要輸出,結束循環;故,判斷條件為.故選B【點睛】本題主要考查完善程序框圖,只需逐步執行框圖,結合輸出結果,即可確定判斷條件,屬于常考題型.3、B【解析】解:命題p:?x>0,ln(x+1)>0,則命題p為真命題,則¬p為假命題;取a=﹣1,b=﹣2,a>b,但a2<b2,則命題q是假命題,則¬q是真命題.∴p∧q是假命題,p∧¬q是真命題,¬p∧q是假命題,¬p∧¬q是假命題.故選B.4、D【解析】
利用等差數列的通項公式可得,再利用等差數列的前項和公式即可求解.【詳解】由,,構成等差數列可得即又解得:又所以時,.故選:D【點睛】本題考查了等差數列的通項公式、等差數列的前項和公式,需熟記公式,屬于基礎題.5、C【解析】分析:根據集合可直接求解.詳解:,,故選C點睛:集合題也是每年高考的必考內容,一般以客觀題形式出現,一般解決此類問題時要先將參與運算的集合化為最簡形式,如果是“離散型”集合可采用Venn圖法解決,若是“連續型”集合則可借助不等式進行運算.6、C【解析】分析:從兩個方向去判斷,先看能推出三角形的形狀是銳角三角形,而非鈍角三角形,從而得到充分性不成立,再看當三角形是鈍角三角形時,也推不出成立,從而必要性也不滿足,從而選出正確的結果.詳解:由題意可得,在中,因為,所以,因為,所以,,結合三角形內角的條件,故A,B同為銳角,因為,所以,即,所以,因此,所以是銳角三角形,不是鈍角三角形,所以充分性不滿足,反之,若是鈍角三角形,也推不出“,故必要性不成立,所以為既不充分也不必要條件,故選D.點睛:該題考查的是有關充分必要條件的判斷問題,在解題的過程中,需要用到不等式的等價轉化,余弦的和角公式,誘導公式等,需要明確對應此類問題的解題步驟,以及三角形形狀對應的特征.7、B【解析】
解出兩個不等式的解集,根據充分條件和必要條件的定義,即可得到本題答案.【詳解】由,得,又由,得,因為集合,所以“”是“”的必要不充分條件.故選:B【點睛】本題主要考查必要不充分條件的判斷,其中涉及到絕對值不等式和一元二次不等式的解法.8、D【解析】
由題可得函數的定義域為,因為,所以函數為奇函數,排除選項B;又,,所以排除選項A、C,故選D.9、B【解析】
首先由求得雙曲線的方程,進而求得三角形的面積,再由三角形的面積等于周長乘以內切圓的半徑即可求解.【詳解】由題意將代入雙曲線的方程,得則,由,得的周長為,設的內切圓的半徑為,則,故選:B【點睛】本題考查雙曲線的定義、方程和性質,考查三角形的內心的概念,考查了轉化的思想,屬于中檔題.10、A【解析】項,由得到,則,故項正確;項,當時,該不等式不成立,故項錯誤;項,當,時,,即不等式不成立,故項錯誤;項,當,時,,即不等式不成立,故項錯誤.綜上所述,故選.11、B【解析】化簡圓M:x2+(y-a)2=a又N(1,1),r12、A【解析】
可采用假設法進行討論推理,即可得到結論.【詳解】由題意,假設甲:我沒有抓到是真的,乙:丙抓到了,則丙:丁抓到了是假的,丁:我沒有抓到就是真的,與他們四人中只有一個人抓到是矛盾的;假設甲:我沒有抓到是假的,那么丁:我沒有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以斷定值班人是甲.故選:A.【點睛】本題主要考查了合情推理及其應用,其中解答中合理采用假設法進行討論推理是解答的關鍵,著重考查了推理與分析判斷能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用集合的補集運算即可求解.【詳解】由全集,,所以.故答案為:【點睛】本題考查了集合的補集運算,需理解補集的概念,屬于基礎題.14、1【解析】由題知x>0,且滿足約束條件的圖象為由圖可知當與交于點B(2,1),當直線過B點時,m取得最大值為1.點睛:線性規劃的實質是把代數問題幾何化,即數形結合的思想.需要注意的是:一、準確無誤地作出可行域;二、畫標準函數所對應的直線時,要注意與約束條件中的直線的斜率進行比較,避免出錯;三、一般情況下,目標函數的最大或最小會在可行域的端點或邊界上取得.15、或【解析】
設出三點的坐標,結合等差數列的性質、線段垂直平分線的性質、拋物線的定義進行求解即可.【詳解】拋物線的準線方程為:,設,由拋物線的定義可知:,,,因為、、成等差數列,所以有,所以,因為線段的垂直平分線與軸交于,所以,因此有,化簡整理得:或.若,由可知;,這與已知矛盾,故舍去;若,所以有,因此.故答案為:或【點睛】本題考查了拋物線的定義的應用,考查了等差數列的性質,考查了數學運算能力.16、,【解析】
根據圖象得出該函數的最大值和最小值,可得,,結合圖象求得該函數的最小正周期,可得出,再將點代入函數解析式,求出的值,即可求得該函數的解析式.【詳解】由圖象可知,,,,,從題圖中可以看出,從時是函數的半個周期,則,.又,,得,取,所以,.故答案為:,.【點睛】本題考查由圖象求函數解析式,考查計算能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)因為,所以,所以,即,又因為,所以數列為等差數列,且公差為1,首項為1,則,即.設的公差為,則,所以(),則(),所以,因此,綜上,.(2)設數列的前n項和為,則兩式相減得,所以,設則,所以.18、(1)見解析(2)(3)【解析】
(1)若函數有局部對稱點,則,即有解,即可求證;(2)由題可得在內有解,即方程在區間上有解,則,設,利用導函數求得的范圍,即可求得的范圍;(3)由題可得在上有解,即在上有解,設,則可變形為方程在區間內有解,進而求解即可.【詳解】(1)證明:由得,代入得,則得到關于x的方程,由于且,所以,所以函數必有局部對稱點(2)解:由題,因為函數在定義域內有局部對稱點所以在內有解,即方程在區間上有解,所以,設,則,所以令,則,當時,,故函數在區間上單調遞減,當時,,故函數在區間上單調遞增,所以,因為,,所以,所以,所以(3)解:由題,,由于,所以,所以(*)在R上有解,令,則,所以方程(*)變為在區間內有解,需滿足條件:,即,得【點睛】本題考查函數的局部對稱點的理解,利用導函數研究函數的最值問題,考查轉化思想與運算能力.19、(1)(2)【解析】
(1)設出直線的方程,再與拋物線聯立方程組,進而求得點的坐標,結合弦長即可求得拋物線的方程;(2)設直線的方程,運用韋達定理可得,可得之間的關系,再運用進行裂項,可求得,解不等式求得的值.【詳解】解:(1)設過拋物線焦點的直線方程為,與拋物線方程聯立得:,設,所以,,,所以拋物線方程為(2)設直線方程為,,,,,,由得.【點睛】本題考查了直線與拋物線的關系,考查了韋達定理和運用裂項法求數列的和,考查了運算能力,屬于中檔題.20、(1)證明見解析(2)【解析】
(1)由底面為菱形,得,再由底面,可得,結合線面垂直的判定可得平面;(2)以點為坐標原點,以所在直線及過點且垂直于平面的直線分別為軸建立空間直角坐標系,分別求出平面與平面的一個法向量,由兩法向量所成角的余弦值可得平面與平面所成銳二面角的余弦值.【詳解】(1)證明:底面為菱形,,底面,平面,又,平面,平面;(2)解:,,為等邊三角形,.底面,是直線與平面所成的角為,在中,由,解得.如圖,以點為坐標原點,以所在直線及過點且垂直于平面的直線分別為軸建立空間直角坐標系.則,,,,.,,,.設平面與平面的一個法向量分別為,.由,取,得;由,取,得..平面與平面所成銳二面角的余弦值為.【點睛】本題考查直線與平面垂直的判定,考查空間想象能力與思維能力,訓練了利用空間向量求解空間角,屬于中檔題.21、(1)(2)【解析】
(1)將,利用三角恒等變換轉化為:,,再根據正弦函數的性質求解,(2)根據,得,又為的內角,得到,再根據,利用兩角和與差的余弦公式求解,【詳解】(1),,,,即的值域為;(2)由,得,又為的內角,所以,又因為在中,,所以,所以.【點睛】本題主要考查三角恒等變換和三角函數的性質,還考查了運算求解的能力,屬于中檔題,22、(1)見解析;(2)【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高端定制帽子行業深度調研及發展項目商業計劃書
- 基于數字孿生的物流庫存動態管理研究-洞察闡釋
- 自適應屬性選擇器的構建-洞察闡釋
- 生物入侵的經濟學分析與區域化管理策略-洞察闡釋
- 醫保服務標準化與質量控制研究-洞察闡釋
- 農資賣賣合同協議書范本
- 地青苗補償合同協議書
- 解除安裝合同協議書模板
- 閨蜜合同協議書搞怪
- 餐飲配送合同協議書范本
- 道路工程施工水泥混凝土路面施工課件
- 胸痛單元建設課件
- 鐵路工程地質勘查階段監理工作總結
- DB41-T 2322-2022水資源公報數據庫設計規范
- 外科經典換藥術培訓課件
- 營養與健康教材課件匯總完整版ppt全套課件最全教學教程整本書電子教案全書教案課件合集
- 新膠工割膠技術培訓
- 掛籃安裝細則
- 2022年高級中學校園文化建設方案
- 《急診與災難醫學》第三版-教學大綱(修改完整版)
- 飽和蒸汽壓力——溫度對照表
評論
0/150
提交評論