




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.已知反比例函數,下列結論正確的是()A.圖象在第二、四象限 B.當時,函數值隨的增大而增大C.圖象經過點 D.圖象與軸的交點為2.現有兩組相同的牌,每組三張且大小一樣,三張牌的牌面數字分別是1、2、3,從每組牌中各摸出一張牌.兩張牌的牌面數字之和等于4的概率是()A. B. C. D.3.若.則下列式子正確的是()A. B. C. D.4.如圖,若為正整數,則表示的值的點落在()A.段① B.段② C.段③ D.段④5.方程(m﹣1)x2﹣2mx+m﹣1=0中,當m取什么范圍內的值時,方程有兩個不相等的實數根?()A.m> B.m>且m≠1 C.m< D.m≠16.如圖,中,中線AD,BE相交于點F,,交于AD于點G,下列說法①;②;③與面積相等;④與四邊形DCEF面積相等.結論正確的是()A.①③④ B.②③④ C.①②③ D.①②④7.如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D為BC的中點,若動點E以1cm/s的速度從A點出發,沿著A→B→A的方向運動,設E點的運動時間為t秒(0≤t<12),連接DE,當△BDE是直角三角形時,t的值為()A.4或5 B.4或7 C.4或5或7 D.4或7或98.在下列四種圖形變換中,如圖圖案包含的變換是()A.平移、旋轉和軸對稱 B.軸對稱和平移C.平移和旋轉 D.旋轉和軸對稱9.已知、是一元二次方程的兩個實數根,則的值為()A.-1 B.0 C.1 D.210.如圖,線段AB兩個端點的坐標分別為A(2,2)、B(3,1),以原點O為位似中心,在第一象限內將線段AB擴大為原來的2倍后得到線段CD,則端點C的坐標分別為()A.(4,4) B.(3,3) C.(3,1) D.(4,1)二、填空題(每小題3分,共24分)11.如圖,一款落地燈的燈柱AB垂直于水平地面MN,高度為1.6米,支架部分的形為開口向下的拋物線,其頂點C距燈柱AB的水平距離為0.8米,距地面的高度為2.4米,燈罩頂端D距燈柱AB的水平距離為1.4米,則燈罩頂端D距地面的高度為______米.12.已知二次函數的圖象開口向下,且其圖象頂點位于第一象限內,請寫出一個滿足上述條件的二次函數解析式為_____(表示為y=a(x+m)2+k的形式).13.如圖,已知二次函數的圖象與軸交于兩點(點在點的左側),與軸交于點為該二次函數在第一象限內的一點,連接,交于點,則的最大值為__________.14.如圖,△ABC中,AB=8厘米,AC=16厘米,點P從A出發,以每秒2厘米的速度向B運動,點Q從C同時出發,以每秒3厘米的速度向A運動,其中一個動點到端點時,另一個動點也相應停止運動,那么,當以A、P、Q為頂點的三角形與△ABC相似時,運動時間為_________________15.若兩個相似三角形的面積之比為1:4,則它們對應角的角平分線之比為___.16.如圖,某商店營業大廳自動扶梯AB的傾斜角為31°,AB的長為12米,則大廳兩層之間的高度為______米.(結果保留兩個有效數字)(參考數據;sin31°=0.515,cos31°=0.857,tan31°=0.601)17.拋物線y=﹣x2向上平移1個單位長度得到拋物線的解析式為_____.18.一個三角形的三邊之比為,與它相似的三角形的周長為,則與它相似的三角形的最長邊為____________.三、解答題(共66分)19.(10分)已知關于的方程.(1)求證:無論為何值,該方程都有兩個不相等的實數根;(2)若該方程的一個根為-1,則另一個根為.20.(6分)如圖,AB、CD、EF是與路燈在同一直線上的三個等高的標桿,已知AB、CD在路燈光下的影長分別為BM、DN,在圖中作出EF的影長.21.(6分)解方程:x2-4x-7=0.22.(8分)如圖,在平面直角坐標系xOy中,A(3,4),B(0,﹣1),C(4,0).(1)以點B為中心,把△ABC逆時針旋轉90°,畫出旋轉后的圖形;(2)在(1)中的條件下,①點C經過的路徑弧的長為(結果保留π);②寫出點A'的坐標為.23.(8分)對于平面直角坐標系中的兩個圖形K1和K2,給出如下定義:點G為圖形K1上任意一點,點H為K2圖形上任意一點,如果G,H兩點間的距離有最小值,則稱這個最小值為圖形K1和K2的“近距離”。如圖1,已知△ABC,A(-1,-8),B(9,2),C(-1,2),邊長為的正方形PQMN,對角線NQ平行于x軸或落在x軸上.(1)填空:①原點O與線段BC的“近距離”為;②如圖1,正方形PQMN在△ABC內,中心O’坐標為(m,0),若正方形PQMN與△ABC的邊界的“近距離”為1,則m的取值范圍為;(2)已知拋物線C:,且-1≤x≤9,若拋物線C與△ABC的“近距離”為1,求a的值;(3)如圖2,已知點D為線段AB上一點,且D(5,-2),將△ABC繞點A順時針旋轉α(0o<α≤180o),將旋轉中的△ABC記為△AB’C’,連接DB’,點E為DB’的中點,當正方形PQMN中心O’坐標為(5,-6),直接寫出在整個旋轉過程中點E運動形成的圖形與正方形PQMN的“近距離”.24.(8分)解方程:;25.(10分)在平面直角坐標系中,我們定義直線y=ax-a為拋物線y=ax2+bx+c(a、b、c為常數,a≠0)的“衍生直線”;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其“衍生三角形”.已知拋物線與其“衍生直線”交于A、B兩點(點A在點B的左側),與x軸負半軸交于點C.(1)填空:該拋物線的“衍生直線”的解析式為,點A的坐標為,點B的坐標為;(2)如圖,點M為線段CB上一動點,將△ACM以AM所在直線為對稱軸翻折,點C的對稱點為N,若△AMN為該拋物線的“衍生三角形”,求點N的坐標;(3)當點E在拋物線的對稱軸上運動時,在該拋物線的“衍生直線”上,是否存在點F,使得以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標;若不存在,請說明理由.26.(10分)如圖,在△ABC中,∠ACB=90o,∠ABC=45o,點O是AB的中點,過A、C兩點向經過點O的直線作垂線,垂足分別為E、F.(1)如圖①,求證:EF=AE+CF.(2)如圖②,圖③,線段EF、AE、CF之間又有怎樣的數量關系?請直接寫出你的猜想.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據反比例函數的性質逐條判斷即可得出答案.【詳解】解:A錯誤圖像在第一、三象限B錯誤當時,函數值y隨x的增大而減小C正確D錯誤反比例函數x≠0,所以與y軸無交點故選C【點睛】此題主要考查了反比例函數的性質,牢牢掌握反比例函數相關性質是解題的關鍵.2、B【分析】畫樹狀圖列出所有情況,看數字之和等于4的情況數占總情況數的多少即可.【詳解】畫樹狀圖得:則共有9種等可能的結果,其中兩張牌的牌面數字之和等于4的有3種結果,∴兩張牌的牌面數字之和等于4的概率為=,故選:B.【點睛】本題考查列表法和樹狀圖法,解題的關鍵是可以不重復不遺漏的列出所有可能的結果.3、A【分析】直接利用比例的性質分別判斷即可得出答案.【詳解】∵2x-7y=0,∴2x=7y.A.,則2x=7y,故此選項正確;B.,則xy=14,故此選項錯誤;C.,則2y=7x,故此選項錯誤;D.,則7x=2y,故此選項錯誤.故選A.【點睛】本題考查了比例的性質,正確將比例式變形是解題的關鍵.4、B【分析】將所給分式的分母配方化簡,再利用分式加減法化簡,根據x為正整數,從所給圖中可得正確答案.【詳解】解∵1.又∵x為正整數,∴1,故表示的值的點落在②.故選B.【點睛】本題考查了分式的化簡及分式加減運算,同時考查了分式值的估算,總體難度中等.5、B【分析】由題意可知原方程的根的判別式△>0,由此可得關于m的不等式,求出不等式的解集后再結合方程的二次項系數不為0即可求出答案.【詳解】解:由題意可知:△=4m2﹣4(m﹣1)2>0,解得:∴m>,∵m﹣1≠0,∴m≠1,∴m的范圍是:m>且m≠1.故選:B.【點睛】本題考查了一元二次方程的根的判別式和一元一次不等式的解法等知識,屬于基本題型,熟練掌握一元二次方程的根的判別式與方程根的個數的關系是解題關鍵.6、D【分析】為BC,AC中點,可得由于可得;可證故①正確.②由于則可證,故②正確.設,可得可判斷③錯,④正確.【詳解】解:①∵為BC,AC中點,;故①正確.②,故②正確.③④設,故③錯,④正確.【點睛】本題考查了平行線段成比例,解題的關鍵是掌握平行線段成比例以及面積與比值的關系.7、D【解析】由條件可求得AB=8,可知E點的運動路線為從A到B,再從B到AB的中點,當△BDE為直角三角形時,只有∠EDB=90°或∠DEB=90°,再結合△BDE和△ABC相似,可求得BE的長,則可求得t的值.【詳解】在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,∴AB=2BC=8cm,∵D為BC中點,∴BD=2cm,∵0≤t<12,∴E點的運動路線為從A到B,再從B到AB的中點,按運動時間分為0≤t≤8和8<t<12兩種情況,①當0≤t≤8時,AE=tcm,BE=BC-AE=(8-t)cm,當∠EDB=90°時,則有AC∥ED,∵D為BC中點,∴E為AB中點,此時AE=4cm,可得t=4;當∠DEB=90°時,∵∠DEB=∠C,∠B=∠B,∴△BED∽△BCA,∴,即,解得t=7;②當8<t<12時,則此時E點又經過t=7秒時的位置,此時t=8+1=9;綜上可知t的值為4或7或9,故選:D.【點睛】本題主要考查相似三角形的判定和性質,用t表示出線段的長,化動為靜,再根據相似三角形的對應邊成比例找到關于t的方程是解決這類問題的基本思路.8、D【分析】根據圖形的形狀沿中間的豎線折疊,兩部分可重合,里外各一個順時針旋轉8次,可得答案.【詳解】解:圖形的形狀沿中間的豎線折疊,兩部分可重合,得軸對稱.里外各一個順時針旋轉8次,得旋轉.故選:D.【點睛】本題考查了幾何變換的類型,平移是沿直線移動一定距離得到新圖形,旋轉是繞某個點旋轉一定角度得到新圖形,軸對稱是沿某條直線翻折得到新圖形.觀察時要緊扣圖形變換特點,認真判斷.9、C【分析】根據根與系數的關系即可求出的值.【詳解】解:∵、是一元二次方程的兩個實數根∴故選C.【點睛】此題考查的是根與系數的關系,掌握一元二次方程的兩根之和=是解決此題的關鍵.10、A【分析】利用位似圖形的性質結合對應點坐標與位似比的關系得出C點坐標.【詳解】∵以原點O為位似中心,在第一象限內將線段AB擴大為原來的2倍后得到線段CD,∴A點與C點是對應點,∵C點的對應點A的坐標為(2,2),位似比為1:2,∴點C的坐標為:(4,4)故選A.【點睛】本題考查了位似變換,正確把握位似比與對應點坐標的關系是解題關鍵.二、填空題(每小題3分,共24分)11、1.95【分析】以點B為原點建立直角坐標系,則點C為拋物線的頂點,即可設頂點式y=a(x?0.8)2+2.4,點A的坐標為(0,1.6),代入可得a的值,從而求得拋物線的解析式,將點D的橫坐標代入,即可求點D的縱坐標就是點D距地面的高度【詳解】解:如圖,以點B為原點,建立直角坐標系.由題意,點A(0,1.6),點C(0.8,2.4),則設頂點式為y=a(x?0.8)2+2.4將點A代入得,1.6=a(0?0.8)2+2.4,解得a=?1.25∴該拋物線的函數關系為y=?1.25(x?0.8)2+2.4∵點D的橫坐標為1.4∴代入得,y=?1.25×(1.4?0.8)2+2.4=1.95故燈罩頂端D距地面的高度為1.95米故答案為1.95.【點睛】本題考查了二次函數的性質在實際生活中的應用.為數學建模題,借助二次函數解決實際問題.12、y=﹣(x﹣1)2+1(答案不唯一)【解析】因為二次函數的頂點坐標為:(-m,k),根據題意圖象的頂點位于第一象限,所以可得:m<0,k>0,因此滿足m<0,k>0的點即可,故答案為:(答案不唯一).13、【分析】由拋物線的解析式易求出點A、B、C的坐標,然后利用待定系數法求出直線BC的解析式,過點P作PQ∥x軸交直線BC于點Q,則△PQK∽△ABK,可得,而AB易求,這樣將求的最大值轉化為求PQ的最大值,可設點P的橫坐標為m,注意到P、Q的縱坐標相等,則可用含m的代數式表示出點Q的橫坐標,于是PQ可用含m的代數式表示,然后利用二次函數的性質即可求解.【詳解】解:對二次函數,令x=0,則y=3,令y=0,則,解得:,∴C(0,3),A(-1,0),B(4,0),設直線BC的解析式為:,把B、C兩點代入得:,解得:,∴直線BC的解析式為:,過點P作PQ∥x軸交直線BC于點Q,如圖,則△PQK∽△ABK,∴,設P(m,),∵P、Q的縱坐標相等,∴當時,,解得:,∴,又∵AB=5,∴.∴當m=2時,的最大值為.故答案為:.【點睛】本題考查了二次函數與坐標軸的交點、二次函數的性質和二次函數圖象上點的坐標特征、待定系數法求函數的解析式、相似三角形的判定和性質等知識,難度較大,屬于填空題中的壓軸題,解題的關鍵是利用相似三角形的判定和性質將所求的最大值轉化為求PQ的最大值、熟練掌握二次函數的性質.14、秒或1秒【分析】此題應分兩種情況討論.(1)當△APQ∽△ABC時;(2)當△APQ∽△ACB時.利用相似三角形的性質求解即可【詳解】解:(1)當△APQ∽△ABC時,設用t秒時,以A、P、Q為頂點的三角形與△ABC相似.,則AP=2t,CQ=3t,AQ=16-3t.于是=,解得,t=(2)當△APQ∽△ACB時,,設用t秒時,以A、P、Q為頂點的三角形與△ABC相似.則AP=2t,CQ=3t,AQ=16-3t.于是,解得t=1.故答案為t=或t=1.【點睛】此題考查了相似三角形的判定和性質,根據題意將對應邊轉換,得到兩組相似三角形是解題的關鍵.15、1:1【分析】根據相似三角形的性質進行分析即可得到答案.【詳解】解:∵兩個相似三角形的面積比為1:4,∴它們對應角的角平分線之比為1:=1:1,故答案為:1:1.【點睛】本題考查對相似三角形性質的理解.(1)相似三角形周長的比等于相似比.(1)相似三角形面積的比等于相似比的平方.(3)相似三角形對應高的比、對應中線的比、對應角平分線的比都等于相似比.16、6.2【分析】根據題意和銳角三角函數可以求得BC的長,從而可以解答本題.【詳解】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB?sin∠BAC=12×0.515≈6.2(米),答:大廳兩層之間的距離BC的長約為6.2米.故答案為6.2.【點睛】本題考查解直角三角形的應用,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用銳角三角函數和數形結合的思想解答.17、y=﹣+1【分析】直接根據平移規律作答即可.【詳解】解:拋物線y=﹣x2向上平移1個單位長度得到拋物線的解析式為y=﹣x2+1,故答案為:y=﹣x2+1.【點睛】本題考查了函數圖像的平移.要求熟練掌握平移的規律:左加右減,上加下減,并用規律求解析式.18、18cm.【分析】由一個三角形的三邊之比為3:6:4,可得與它相似的三角形的三邊之比為3:6:4,又由與它相似的三角形的周長為39cm,即可求得答案.【詳解】解:∵一個三角形的三邊之比為3:6:4,∴與它相似的三角形的三邊之比為3:6:4,∵與它相似的三角形的周長為39cm,∴與它相似的三角形的最長邊為:39×=18(cm).
故答案為:18cm.【點睛】此題考查了相似三角形的性質.此題比較簡單,注意相似三角形的對應邊成比例.三、解答題(共66分)19、(1)見解析;(2)1或-1【分析】(1)根據因式分解法求出方程的兩個解,再證明這兩個解不相等即可;(2)根據(1)中的兩個解分類討論即可.【詳解】(1)證明:原方程可化為或,∵∴無論為何值,該方程都有兩個不相等的實數根.(2)當時,解得:m=1,即方程的另一個根為1;當m=-1時,則另一個根為,∴另一個根為1或-1故答案為:1或-1.【點睛】此題考查的是解一元二次方程和根據一元二次方程的一個根求另一個根,掌握因式分解法解一元二次方程和分類討論的數學思想是解決此題的關鍵.20、詳見解析.【分析】連接MA并延長,連接NC并延長,兩延長線相交于一點O,點O是路燈所在的點,再連接OE,并延長OE交地面于點G,FG即為所求.【詳解】如圖所示,FG即為所求.【點睛】本題考查了中心投影:由同一點(點光源)發出的光線形成的投影叫做中心投影.如物體在燈光的照射下形成的影子就是中心投影;中心投影的光線特點是從一點出發的投射線.21、【解析】x2-4x-7=0,∵a=1,b=-4,c=-7,∴△=(-4)2-4×1×(-7)=44>0,∴x=,∴.22、(1)見解析;(2)①,②(﹣5,2).【分析】(1)利用網格特點和旋轉的性質畫出A、C的對應點A′、C′,然后順次連接即可;(2)①先利用勾股定理計算出BC的長,然后利用弧長公式計算;②利用(1)中所畫圖形寫出點A′的坐標.【詳解】解:(1)如圖,△A′BC′為所作;(2)①BC=,故點C經過的路徑弧的長==π;②點A′的坐標為(﹣5,2).故答案為:π,(﹣5,2).【點睛】本題考查了作圖?旋轉變換:根據旋轉的性質可知,對應角都相等都等于旋轉角,對應線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應點,順次連接得出旋轉后的圖形,也考查了弧長公式的應用.23、(1)①2;②;(2)或;(3)點E運動形成的圖形與正方形PQMN的“近距離”為.【分析】(1)①由垂線段最短,即可得到答案;②根據題意,找出正方形PQMN與△ABC的邊界的“近距離”為1,的臨界點,然后分別求出m的最小值和最大值,即可得到m的取值范圍;(2)根據題意,拋物線與△ABC的“近距離”為1時,可分為兩種情況:當點C到拋物線的距離為1,即CD=1;當拋物線與線段AB的距離為1時,即GH=1;分別求出a的值,即可得到答案;(3)根據題意,取AB的中點F,連接EF,求出EF的長度,然后根據題意,求出點F,點Q的坐標,求出FQ的長度,即可得到EQ的長度,即可得到答案.【詳解】解:(1)①∵B(9,2),C(,2),∴點B、C的縱坐標相同,∴線段BC∥x軸,∴原點O到線段BC的最短距離為2;即原點O與線段BC的“近距離”為2;故答案為:2;②∵A(-1,-8),B(9,2),C(-1,2),∴線段BC∥x軸,線段AC∥y軸,∴AC=BC=10,△ABC是等腰直角三角形,當點N與點O重合時,點N與線段AC的最短距離為1,則正方形PQMN與△ABC的邊界的“近距離”為1,此時m為最小值,∵正方形的邊長為,由勾股定理,得:,∴,(舍去);當點Q到線段AB的距離為1時,此時m為最大值,如圖:∵QN=1,△QMN是等腰直角三角形,∴QM=,∵BD=9,△BDE是等腰直角三角形,∴DE=9,∵△OEM是等腰直角三角形,∴OE=OM=7,∴m的最大值為:,∴m的取值范圍為:;故答案為:;(2)拋物線C:,且,若拋物線C與△ABC的“近距離”為1,由題可知,點C與拋物線的距離為1時,如圖:∵點C的坐標為(,2),∴但D的坐標為(,3),把點D代入中,有,解得:;當線段AB與拋物線的距離為1時,近距離為1,如圖:即GH=1,點H在拋物線上,過點H作AB的平行線,線段AB與y軸相交于點F,作FE⊥EH,垂足為E,∴EF=GH=1,∵∠FDE=∠A=45°,∴,∵點A(-1,-8),B(9,2),設直線AB為,∴,解得:,∴直線AB的解析式為:,∴直線EH的解析式為:;∴聯合與,得,整理得:,∵直線EH與拋物線有一個交點,∴,解得:;綜合上述,a的值為:或;(3)由題意,取AB的中點F,連接EF,如圖:∵點A(-1,-8),B(9,2),∴,在中,F是AD的中點,點E是的中點,∴,∵點D的坐標為(5,-2),A(-1,-8),∴點F的坐標為(2,),∵在正方形PNMQ中,中心點的坐標為(5,),∴點Q的坐標為(6,),∴,∴;∴點E運動形成的圖形與正方形PQMN的“近距離”為.【點睛】本題考查了圖形的運動問題和最短路徑問題,考查了二次函數的性質,正方形的性質,等腰直角三角形的性質,一次函數的平移,勾股定理,旋轉的性質,根的判別式等知識,解題的關鍵是熟練掌握所學的知識,正確作出輔助線,作出臨界點的圖形,從而進行分析.注意運用數形結合的思想和分類討論的思想進行解題.難度很大,是中考壓軸題.24、1+、1-【詳解】X=1+或者x=1-25、(1);(-2,);(1,0);(2)N點的坐標為(0,),(0,);(3)E(-1,-)、F(0,)或E(-1,),F(-4,)【分析】(1)由拋物線的“衍生直線”知道二次函數解析式的a即可;(2)過A作AD⊥y軸于點D,則可知AN=AC,結合A點坐標,則可求出ON的長,可求出N點的坐標;(3)分別討論當AC為平行四邊形的邊時,當AC為平行四邊形的對角線時,求出滿足條件的E、F坐標即可【詳解】(1)∵,a=,則拋物線的“衍生直線”的解析式為;聯立兩解析式求交點,解得或,∴A(-2,),B(1,0);(2)如圖1,過A作AD⊥y軸于點D,在中,令y=0可求得x=-3或x=1,∴C(-3,0),且A(-2,),∴AC=由翻折的性質可知AN=AC=,∵△AMN為該拋
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 秸稈焚燒責任管理辦法
- 庫存使用登記管理辦法
- 道路施工文明管理辦法
- 就業困難基金管理辦法
- 肺與大腸中醫課件視頻
- 腸梗阻課件護理
- 肝腎中醫課件
- 空分車間培訓課件
- 電腦出數學試卷
- 高淳2024年數學試卷
- 場地平整項目承包合同范本
- 河南省歷年中考語文現代文閱讀之非連續性文本閱讀5篇(截至2024年)
- 麥秸稈環保板材項目可行性研究報告
- 《中醫養生學》課件-八段錦
- 山東某智慧農場項目可行性研究報告
- 交通運輸安全生產知識培訓
- 電力埋管施工組織設計方案
- 產后出血的護理課件
- 新建自體血液回收機項目立項申請報告
- 新疆阿克蘇地區(2024年-2025年小學六年級語文)統編版小升初真題(下學期)試卷及答案
- 西安郵電大學《軟件工程》2023-2024學年第一學期期末試卷
評論
0/150
提交評論