




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如圖,四邊形ABCD是⊙O的內接四邊形,若⊙O的半徑為4,且∠B=2∠D,連接AC,則線段AC的長為()A.4 B.4 C.6 D.82.方程的根是()A.5和 B.2和 C.8和 D.3和3.在中,,則的長為()A. B. C. D.4.如圖是拋物線的部分圖象,其頂點坐標是,給出下列結論:①;②;③;④;⑤.其中正確結論的個數是()A.2 B.3 C.4 D.55.如圖,將繞點按逆時針方向旋轉后得到,若,則的度數為()A. B. C. D.6.我校小偉同學酷愛健身,一天去爬山鍛煉,在出發點C處測得山頂部A的仰角為30度,在爬山過程中,每一段平路(CD、EF、GH)與水平線平行,每一段上坡路(DE、FG、HA)與水平線的夾角都是45度,在山的另一邊有一點B(B、C、D同一水平線上),斜坡AB的坡度為2:1,且AB長為900,其中小偉走平路的速度為65.7米/分,走上坡路的速度為42.3米/分.則小偉從C出發到坡頂A的時間為()(圖中所有點在同一平面內≈1.41,≈1.73)A.60分鐘 B.70分鐘 C.80分鐘 D.90分鐘7.如圖,等腰與等腰是以點為位似中心的位似圖形,位似比為,則點的坐標是()A. B. C. D.8.如圖,l1∥l2∥l3,直線a,b與l1,l2,l3分別相交于點A、B、C和點D、E、F,若,DE=4,則DF的長是()A. B. C.10 D.69.拋物線y=2(x-1)2-6的對稱軸是().A.x=-6 B.x=-1 C.x= D.x=110.如圖,的半徑為2,圓心的坐標為,點是上的任意一點,,且、與軸分別交于、兩點,若點、點關于原點對稱,則的最大值為()A.7 B.14 C.6 D.15二、填空題(每小題3分,共24分)11.如圖,公路AC,BC互相垂直,公路AB的中點M與點C被湖隔開,若測得AB的長為2.4km,則M,C兩點間的距離為______km.12.一元二次方程x2﹣16=0的解是_____.13.如圖,AB是⊙O的直徑,且AB=6,弦CD⊥AB交AB于點P,直線AC,DB交于點E,若AC:CE=1:2,則OP=_____.14.如圖,是銳角的外接圓,是的切線,切點為,,連結交于,的平分線交于,連結.下列結論:①平分;②連接,點為的外心;③;④若點,分別是和上的動點,則的最小值是.其中一定正確的是__________(把你認為正確結論的序號都填上).15.如圖,△ABC中,∠ACB=90°,∠BAC=20°,點O是AB的中點,將OB繞點O順時針旋轉α角時(0°<α<180°),得到OP,當△ACP為等腰三角形時,α的值為_____.16.在一個不透明的布袋中裝有紅色和白色兩種顏色的小球(除顏色以外沒有任何區別),隨機摸出一球,摸到紅球的概率是,其中白球6個,則紅球有________個.17.如圖,在邊長為4的菱形ABCD中,∠A=60°,M是AD邊的中點,點N是AB邊上一動點,將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,則線段A′C長度的最小值是______.18.如圖,正方形的頂點、在圓上,若,圓的半徑為2,則陰影部分的面積是__________.(結果保留根號和)三、解答題(共66分)19.(10分)如圖1,⊙O是△ABC的外接圓,AB是直徑,D是⊙O外一點且滿足∠DCA=∠B,連接AD.(1)求證:CD是⊙O的切線;(2)若AD⊥CD,AB=10,AD=8,求AC的長;(3)如圖2,當∠DAB=45°時,AD與⊙O交于E點,試寫出AC、EC、BC之間的數量關系并證明.20.(6分)如圖,某貨船以24海里/時的速度將一批重要物資從A處運往正東方向的M處,在點A處測得某島C在北偏東60°的方向上.該貨船航行30分鐘后到達B處,此時再測得該島在北偏東30°的方向上,(1)求B到C的距離;(2)如果在C島周圍9海里的區域內有暗礁.若繼續向正東方向航行,該貨船有無觸礁危險?試說明理由(≈1.732).21.(6分)計算:(1)2sin30°+cos45°tan60°(2)()0()-2tan230.22.(8分)如圖,在△ABC中,AB=5,AC=3,BC=4,將△ABC繞點A逆時針旋轉30°后得到△ADE,點B經過的路線為弧BD求圖中陰影部分的面積.23.(8分)如圖,在平面直角坐標系中,拋物線y=ax2+bx+c的頂點坐標為(2,9),與y軸交于點A(0,5),與x軸交于點E、B.(1)求二次函數y=ax2+bx+c的表達式;(2)過點A作AC平行于x軸,交拋物線于點C,點P為拋物線上的一點(點P在AC上方),作PD平行于y軸交AB于點D,問當點P在何位置時,四邊形APCD的面積最大?并求出最大面積;(3)若點M在拋物線上,點N在其對稱軸上,使得以A、E、N、M為頂點的四邊形是平行四邊形,且AE為其一邊,求點M、N的坐標.24.(8分)如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點,(1)求證:AC2=AB?AD;(2)求證:CE∥AD;(3)若AD=4,AB=6,求的值.25.(10分)在菱形中,,延長至點,延長至點,使,連結,,延長交于點.(1)求證:;(2)求的度數.26.(10分)如圖,已知矩形ABCD中,E是AD上的一點,F是AB上的一點,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周長為32cm,求AE的長.
參考答案一、選擇題(每小題3分,共30分)1、B【分析】連接OA,OC,利用內接四邊形的性質得出∠D=60°,進而得出∠AOC=120°,利用含30°的直角三角形的性質解答即可.【詳解】連接OA,OC,過O作OE⊥AC,∵四邊形ABCD是⊙O的內接四邊形,∠B=2∠D,∴∠B+∠D=3∠D=180°,解得:∠D=60°,∴∠AOC=120°,在Rt△AEO中,OA=4,∴AE=2,∴AC=4,故選:B.【點睛】此題考查內接四邊形的性質,關鍵是利用內接四邊形的性質得出∠D=60°.2、C【分析】利用直接開平方法解方程即可得答案.【詳解】(x-3)2=25,∴x-3=±5,∴x=8或x=-2,故選:C.【點睛】本題考查解一元二次方程,解一元二次方程的常用方法有:直接開平方法、配方法、公式法、因式分解法等,熟練掌握并靈活運用適當的方法是解題關鍵.3、C【分析】根據角的正弦值與三角形邊的關系結合勾股定理即可求解.【詳解】∵在Rt△ABC中,∠C=90°,,,∴,設,則,∵,即,解得:,∴,故選:C.【點睛】本題考查了銳角三角函數的定義以及勾股定理,熟記銳角三角函數的定義是解題的關鍵.4、C【分析】①根據開口方向,對稱軸的位置以及二次函數與y軸的交點的位置即可判斷出a,b,c的正負,從而即可判斷結論是否正確;②根據對稱軸為即可得出結論;③利用頂點的縱坐標即可判斷;④利用時的函數值及a,b之間的關系即可判斷;⑤利用時的函數值,即可判斷結論是否正確.【詳解】①∵拋物線開口方向向上,.∵對稱軸為,∴.∵拋物線與y軸的交點在y軸的負半軸,∴,∴,故錯誤;②∵對稱軸為,∴,,故正確;③由頂點的縱坐標得,,∴,∴,∴,故正確;④當時,,故正確;⑤當時,,故正確;所以正確的有4個,故選:C.【點睛】本題主要考查二次函數的圖象和性質,掌握二次函數的圖象和性質是解題的關鍵.5、D【分析】由題意可知旋轉角∠BCB′=60°,則根據∠ACB′=∠BCB′+∠ACB即可得出答案.【詳解】解:根據旋轉的定義可知旋轉角∠BCB′=60°,∴∠ACB′=∠BCB′+∠ACB=60°+25°=85°.故選:D.【點睛】本題主要考查旋轉的定義,解題的關鍵是找到旋轉角,以及旋轉后的不變量.6、C【分析】如圖,作AP⊥BC于P,延長AH交BC于Q,延長EF交AQ于T.想辦法求出AQ、CQ即可解決問題.【詳解】解:如圖,作AP⊥BC于P,延長AH交BC于Q,延長EF交AQ于T.由題意:=2,AQ=AH+FG+DE,CQ=CD+EF+GH,∠AQP=45°,∵∠APB=90°,AB=900,∴PB=900,PA=1800,∵∠PQA=∠PAQ=45°,∴PA=PQ=1800,AQ=PA=1800,∵∠C=30°,∴PC=PA=1800,∴CQ=1800﹣1800,∴小偉從C出發到坡頂A的時間=≈80(分鐘),故選:C.【點睛】本題考查了解直角三角形的應用,熟練掌握并靈活運用是解題的關鍵.7、A【分析】根據位似比為,可得,從而得:CE=DE=12,進而求得OC=6,即可求解.【詳解】∵等腰與等腰是以點為位似中心的位似圖形,位似比為,∴,即:DE=3BC=12,∴CE=DE=12,∴,解得:OC=6,∴OE=6+12=18,∴點的坐標是:.故選A.【點睛】本題主要考查位似圖形的性質,掌握位似圖形的位似比等于相似比,是解題的關鍵.8、C【解析】試題解析:又DE=4,∴EF=6,∴DF=DE+EF=10,故選C.9、D【解析】根據拋物線的頂點式,直接得出結論即可.【詳解】解:∵拋物線y=2(x-1)2-6,
∴拋物線的對稱軸是x=1.
故選D.【點睛】本題考查了二次函數的性質,要熟悉二次函數的頂點式:y=a(x-h)2+k(a≠0),其頂點坐標為(h,k),對稱軸為x=h.10、B【分析】根據“PA⊥PB,點A與點B關于原點O對稱”可知AB=2OP,從而確定要使AB取得最大值,則OP需取得最大值,然后過點M作MQ⊥x軸于點Q,確定OP的最大值即可.【詳解】∵PA⊥PB∴∠APB=90°∵點A與點B關于原點O對稱,∴AO=BO∴AB=2OP若要使AB取得最大值,則OP需取得最大值,連接OM,交○M于點,當點P位于位置時,OP取得最小值,過點M作MQ⊥x軸于點Q,則OQ=3,MQ=4,∴OM=5∵∴當點P在的延長線于○M的交點上時,OP取最大值,∴OP的最大值為3+2×2=7∴AB的最大值為7×2=14故答案選B.【點睛】本題考查的是圓上動點與最值問題,能夠找出最值所在的點是解題的關鍵.二、填空題(每小題3分,共24分)11、1.1【解析】根據直角三角形斜邊上的中線等于斜邊的一半,可得MC=12AB=1.1km【詳解】∵在Rt△ABC中,∠ACB=90°,M為AB的中點,∴MC=12故答案為:1.1.【點睛】此題考查直角三角形的性質,解題關鍵點是熟練掌握在直角三角形中,斜邊上的中線等于斜邊的一半,理解題意,將實際問題轉化為數學問題是解題的關鍵.12、x1=﹣1,x2=1【分析】直接運用直接開平方法進行求解即可.【詳解】解:方程變形得:x2=16,開方得:x=±1,解得:x1=﹣1,x2=1.故答案為:x1=﹣1,x2=1【點睛】本題考查了一元二次方程的解法,掌握直接開平方法是解答本題的關鍵.13、1.【分析】過點E作EF⊥AB于點F,證明△ACP∽△AEF以及△PBD∽△FBE,設PB=x,然后利用相似三角形的性質即可求出答案.【詳解】過點E作EF⊥AB于點F,∵CP⊥AB,AC:CE=1:2,∴CP∥EF,AC:AE=1:3,∴△ACP∽△AEF,∴,∵PD∥EF,∴△PBD∽△FBE,∴,∵PC=PD,∴,設PB=x,BF=3x,∴AP=6﹣x,AF=6+3x,∴,解得:x=2,∴PB=2,∴OP=1,故答案為:1.【點睛】本題考查了圓中的計算問題,熟練掌握垂徑定理,相似三角形的判定與性質是解題的關鍵.14、【分析】如圖1,連接,通過切線的性質證,進而由,即可由垂徑定理得到F是的中點,根據圓周角定理可得,可得平分;由三角形的外角性質和同弧所對的圓周角相等可得,可得,可得點為得外心;如圖,過點C作交的延長線與點通過證明,可得;如圖,作點關于的對稱點,當點在線段上,且時,.【詳解】如圖,連接,∵是的切線,∴,∵∴,且為半徑∴垂直平分∴∴∴平分,故正確點的外心,故正確;如圖,過點C作交的延長線與點,故正確;如圖,作點關于的對稱點,點與點關于對稱,當點在線段上,且時,,且∴的最小值為;故正確.故答案為:.【點睛】本題是相似綜合題,考查了圓的相關知識,相似三角形的判定和性質,軸對稱的性質,靈活運用這些性質進行推理是本題的關鍵.15、40°或70°或100°.【分析】根據旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.先連結AP,如圖,由旋轉的性質得OP=OB,則可判斷點P、C在以AB為直徑的圓上,利用圓周角定理得∠BAP=∠BOP=α,∠ACP=∠ABP=90°﹣α,∠APC=∠ABC=70°,然后分類討論:當AP=AC時,∠APC=∠ACP,即90°﹣α=70°;當PA=PC時,∠PAC=∠ACP,即α+20°=90°﹣α,;當CP=CA時,∠CAP=∠CAP,即α+20°=70°,再分別解關于α的方程即可.【詳解】連結AP,如圖,∵點O是AB的中點,∴OA=OB,∵OB繞點O順時針旋轉α角時(0°<α<180°),得到OP,∴OP=OB,∴點P在以AB為直徑的圓上,∴∠BAP=∠BOP=α,∠APC=∠ABC=70°,∵∠ACB=90°,∴點P、C在以AB為直徑的圓上,∴∠ACP=∠ABP=90°﹣α,∠APC=∠ABC=70°,當AP=AC時,∠APC=∠ACP,即90°﹣α=70°,解得α=40°;當PA=PC時,∠PAC=∠ACP,即α+20°=90°﹣α,解得α=70°;當CP=CA時,∠CAP=∠CPA,即α+20°=70°,解得α=100°,綜上所述,α的值為40°或70°或100°.故答案為40°或70°或100°.考點:旋轉的性質.16、1【分析】設紅球有x個,根據題意列出方程,解方程并檢驗即可.【詳解】解:設紅球有x個,由題意得:,解得,經檢驗,是原分式方程的解,所以,紅球有1個,故答案為:1.【點睛】本題主要考查根據概率求數量,掌握概率的求法是解題的關鍵.17、【詳解】解:如圖所示:∵MA′是定值,A′C長度取最小值時,即A′在MC上時,過點M作MF⊥DC于點F,∵在邊長為2的菱形ABCD中,∠A=60°,M為AD中點,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=1,∴FM=DM×cos30°=,∴,∴A′C=MC﹣MA′=.故答案為.【點評】此題主要考查了菱形的性質以及銳角三角函數關系等知識,得出A′點位置是解題關鍵.18、【分析】設AD和BC分別與圓交于點E和F,連接AF、OE,過點O作OG⊥AE,根據90°的圓周角對應的弦是直徑,可得AF為圓的直徑,從而求出AF,然后根據銳角三角函數和勾股定理,即可求出∠AFB和BF,然后根據平行線的性質、銳角三角函數和圓周角定理,即可求出OG、AG和∠EOF,最后利用S陰影=S梯形AFCD-S△AOE-S扇形EOF計算即可.【詳解】解:設AD和BC分別與圓交于點E和F,連接AF、OE,過點O作OG⊥AE∵四邊形ABCD是正方形∴∠ABF=90°,AD∥BC,BC=CD=AD=cm∴AF為圓的直徑∵,圓的半徑為2,∴AF=4cm在Rt△ABF中sin∠AFB=,BF=∴∠AFB=60°,FC=BC-BF=∴∠EAF=∠AFB=60°∴∠EOF=2∠EAF=120°在Rt△AOG中,OG=sin∠EAF·AO=,AG=cos∠EAF·AO=1cm根據垂徑定理,AE=2AG=2cm∴S陰影=S梯形AFCD-S△AOE-S扇形EOF===故答案為:.【點睛】此題考查的是求不規則圖形的面積,掌握正方形的性質、90°的圓周角對應的弦是直徑、垂徑定理、勾股定理和銳角三角函數的結合和扇形的面積公式是解決此題的關鍵.三、解答題(共66分)19、(1)見解析;(2)AC的長為4;(3)AC=BC+EC,理由見解析【分析】(1)連接OC,由直徑所對圓周角是直角可得∠ACB=90°,由OC=OB得出∠OCB=∠B,由因為∠DCA=∠B,從而可得∠DCA=∠OCB,即可得出∠DCO=90°;(2)由題意證明△ACD∽△ABC,根據對應邊成比例列出等式求出AC即可;(3)在AC上截取AF使AF=BC,連接EF、BE,通過條件證明△AEF≌△BEC,根據性質推出△EFC為等腰直角三角形,即可證明AC、EC、BC的數量關系.【詳解】(1)證明:連接OC,如圖1所示:∵AB是⊙O的直徑,∴∠ACB=90°,∵OC=OB,∴∠B=∠OCB,∵∠DCA=∠B,∴∠DCA=∠OCB,∴∠DCO=∠DCA+∠OCA=∠OCB+∠OCA=∠ACB=90°,∴CD⊥OC,∴CD是⊙O的切線;(2)解:∵AD⊥CD∴∠ADC=∠ACB=90°又∵∠DCA=∠B∴△ACD∽△ABC∴,即,∴AC=4,即AC的長為4;(3)解:AC=BC+EC;理由如下:在AC上截取AF使AF=BC,連接EF、BE,如圖2所示:∵AB是直徑,∴∠ACB=∠AEB=90°,∵∠DAB=45°,∴△AEB為等腰直角三角形,∴∠EAB=∠EBA=∠ECA=45°,AE=BE,在△AEF和△BEC中,,∴△AEF≌△BEC(SAS),∴EF=CE,∠AFE=∠BCE=∠ACB+∠ECA=90°+45°=135°,∴∠EFC=180°﹣∠AFE=180°﹣135°=45°,∴∠EFC=∠ECF=45°,∴△EFC為等腰直角三角形.∴CF=EC,∴AC=AF+CF=BC+EC.【點睛】本題考查圓與三角形的結合,關鍵在于牢記基礎性質,利用三角形的相似對應邊以及三角形的全等進行計算.20、(1)12海里;(2)該貨船無觸礁危險,理由見解析【分析】(1)證出∠BAC=∠ACB,得出BC=AB=24×=12即可;(2)過點C作CD⊥AD于點D,分別在Rt△CBD、Rt△CAD中解直角三角形,可先求得BD的長,然后得出CD的長,從而再將CD與9比較,若大于9則無危險,否則有危險.【詳解】解:(1)由題意得:∠BAC=90°﹣10°=30°,∠MBC=90°﹣30°=10°,∵∠MBC=∠BAC+∠ACB,∴∠ACB=∠MBC﹣∠BAC=30°,∴∠BAC=∠ACB,∴BC=AB=24×=12(海里);(2)該貨船無觸礁危險,理由如下:過點C作CD⊥AD于點D,如圖所示:∵∠EAC=10°,∠FBC=30°,∴∠CAB=30°,∠CBD=10°.∴在Rt△CBD中,CD=BD,BC=2BD,由(1)知BC=AB,∴AB=2BD.在Rt△CAD中,AD=CD=3BD=AB+BD=12+BD,∴BD=1.∴CD=1.∵1>9,∴貨船繼續向正東方向行駛無觸礁危險.【點睛】本題考查解直角三角形的應用-方向角問題、等腰三角形的判定與性質等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題.21、(1)-2(2)【分析】(1)根據特殊角的三角函數值即可求解;(2)根據負指數冪、零指數冪及特殊角的三角函數值即可求解.【詳解】(1)2sin30°+cos45°tan60°=2×+-×=1+-3=-2(2)()0()-2tan230=1-4+()2=-3+=.【點睛】此題主要考查實數的運算,解題的關鍵是熟知特殊角的三角函數值.22、π.【分析】根據旋轉的性質得到△AED的面積=△ABC的面積,得到陰影部分的面積=扇形ADB的面積,根據扇形面積公式計算即可.【詳解】∵將△ABC繞點A逆時針旋轉30°后得到△ADE,∴根據旋轉可知:∠DAB=30°,△AED≌△ACB,∴S△AED=S△ACB,∴圖中陰影部分的面積S=S扇形DAB+S△AED﹣S△ACB=S扇形DABπ.【點睛】本題考查的是扇形面積的計算、旋轉的性質,根據圖形得到陰影部分的面積=扇形ADB的面積是解題的關鍵.23、(1)y=﹣x2+4x+5;(2)點P(,)時,S四邊形APCD最大=;(3)當M點的坐標為(1,8)時,N點坐標為(2,13),當M點的坐標為(3,8)時,N點坐標為(2,3).【解析】試題分析:(1)設出拋物線解析式,用待定系數法求解即可;(2)先求出直線AB解析式,設出點P坐標(x,﹣x2+4x+5),建立函數關系式S四邊形APCD=﹣2x2+10x,根據二次函數求出極值;(3)先判斷出△HMN≌△AOE,求出M點的橫坐標,從而求出點M,N的坐標.試題解析:(1)設拋物線解析式為y=a+9,∵拋物線與y軸交于點A(0,5),∴4a+9=5,∴a=﹣1,y=﹣+9=-+4x+5,(2)當y=0時,-+4x+5=0,∴x1=﹣1,x2=5,∴E(﹣1,0),B(5,0),設直線AB的解析式為y=mx+n,∵A(0,5),B(5,0),∴m=﹣1,n=5,∴直線AB的解析式為y=﹣x+5;設P(x,﹣+4x+5),∴D(x,﹣x+5),∴PD=-+4x+5+x﹣5=-+5x,∵AC=4,∴S四邊形APCD=×AC×PD=2(-+5x)=-2+10x,∴當x=時,∴S四邊形APCD最大=,(3)如圖,過M作MH垂直于對稱軸,垂足為H,∵MN∥AE,MN=AE,∴△HMN≌△AOE,∴HM=OE=1,∴M點的橫坐標為x=3或x=1,當x=1時,M點縱坐標為8,當x=3時,M點縱坐標為8,∴M點的坐標為M1(1,8)或M2(3,8),∵A(0,5),E(﹣1,0),∴直線AE解析式為y=5x+5,∵MN∥AE,∴MN的解析式為y=5x+b,∵點N在拋物線對稱軸x=2上,∴N(2,10+b),∵AE2=OA2+0E2=26∵MN=AE∴MN2=AE2,∴MN2=(2﹣1)2+[8﹣(10+b)]2=1+(b+2)2∵M點的坐標為M1(1,8)或M2(3,8),∴點M1,M2關于拋物線對稱軸x=2對稱,∵點N在拋物線對稱軸上,∴M1N=M2N,∴1+(b+2)2=26,∴b=3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 秸稈焚燒責任管理辦法
- 庫存使用登記管理辦法
- 道路施工文明管理辦法
- 就業困難基金管理辦法
- 肺與大腸中醫課件視頻
- 腸梗阻課件護理
- 肝腎中醫課件
- 空分車間培訓課件
- 電腦出數學試卷
- 高淳2024年數學試卷
- 場地平整項目承包合同范本
- 河南省歷年中考語文現代文閱讀之非連續性文本閱讀5篇(截至2024年)
- 麥秸稈環保板材項目可行性研究報告
- 《中醫養生學》課件-八段錦
- 山東某智慧農場項目可行性研究報告
- 交通運輸安全生產知識培訓
- 電力埋管施工組織設計方案
- 產后出血的護理課件
- 新建自體血液回收機項目立項申請報告
- 新疆阿克蘇地區(2024年-2025年小學六年級語文)統編版小升初真題(下學期)試卷及答案
- 西安郵電大學《軟件工程》2023-2024學年第一學期期末試卷
評論
0/150
提交評論