河北省廊坊市名校2022-2023學(xué)年數(shù)學(xué)九年級第一學(xué)期期末綜合測試試題含解析_第1頁
河北省廊坊市名校2022-2023學(xué)年數(shù)學(xué)九年級第一學(xué)期期末綜合測試試題含解析_第2頁
河北省廊坊市名校2022-2023學(xué)年數(shù)學(xué)九年級第一學(xué)期期末綜合測試試題含解析_第3頁
河北省廊坊市名校2022-2023學(xué)年數(shù)學(xué)九年級第一學(xué)期期末綜合測試試題含解析_第4頁
河北省廊坊市名校2022-2023學(xué)年數(shù)學(xué)九年級第一學(xué)期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.二次函數(shù)y=x2+4x+3,當0≤x≤時,y的最大值為()A.3 B.7 C. D.2.若反比例函數(shù)的圖象經(jīng)過點,則這個函數(shù)的圖象一定還經(jīng)過點()A. B. C. D.3.學(xué)校要組織足球比賽.賽制為單循環(huán)形式(每兩隊之間賽一場).計劃安排21場比賽,應(yīng)邀請多少個球隊參賽?設(shè)邀請x個球隊參賽.根據(jù)題意,下面所列方程正確的是()A. B. C. D.4.若均為銳角,且,則().A. B.C. D.5.若反比例函數(shù)的圖象過點(-2,1),則這個函數(shù)的圖象一定過點()A.(2,-1) B.(2,1) C.(-2,-1) D.(1,2)6.過矩形ABCD的對角線AC的中點O作EF⊥AC,交BC邊于點E,交AD邊于點F,分別連接AE、CF,若AB,∠DCF30°,則EF的長為().A.2 B.3 C. D.7.點在反比例函數(shù)y=的圖象上,則k的值是()A.1 B.3 C.﹣1 D.﹣38.下列圖形:(1)等邊三角形,(2)矩形,(3)平行四邊形,(4)菱形,是中心對稱圖形的有()個A.4 B.3 C.2 D.19.如圖,△ABC中,AB=25,BC=7,CA=1.則sinA的值為()A. B. C. D.10.如果兩個相似三角形的周長比是1:2,那么它們的面積比是()A.1:2 B.1:4 C.1: D.:111.關(guān)于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的兩個實數(shù)根互為相反數(shù),則a的值為()A.2 B.0 C.1 D.2或012.下列汽車標志中,是中心對稱圖形的有()個.A.1 B.2 C.3 D.4二、填空題(每題4分,共24分)13.如圖,對稱軸平行于y軸的拋物線與x軸交于(1,0),(3,0)兩點,則它的對稱軸為________.14.如圖,在4×4的正方形網(wǎng)格中,若將△ABC繞著點A逆時針旋轉(zhuǎn)得到△AB′C′,則的長為_____.15.點A,B都在反比例函數(shù)圖象上,則_____.(填寫<,>,=號)16.如圖,中,,則__________.17.某中學(xué)數(shù)學(xué)興趣小組在一次課外學(xué)習與探究中遇到一些新的數(shù)學(xué)符號,他們將其中某些材料摘錄如下:對于三個實數(shù),用表示這三個數(shù)中最小的數(shù),例如,.請結(jié)合上述材料,求_____.18.在相同時刻,物高與影長成正比.在某一晴天的某一時刻,某同學(xué)測得他自己的影長是2.4m,學(xué)校旗桿的影長為13.5m,已知該同學(xué)的身高是1.6m,則學(xué)校旗桿的高度是_____.三、解答題(共78分)19.(8分)如圖,拋物線經(jīng)過點A(1,0),B(4,0)與軸交于點C.(1)求拋物線的解析式;(2)如圖①,在拋物線的對稱軸上是否存在點P,使得四邊形PAOC的周長最小?若存在,求出四邊形PAOC周長的最小值;若不存在,請說明理由.(3)如圖②,點Q是線段OB上一動點,連接BC,在線段BC上是否存在這樣的點M,使△CQM為等腰三角形且△BQM為直角三角形?若存在,求M的坐標;若不存在,請說明理由.20.(8分)在銳角三角形中,已知,,的面積為,求的余弦值.21.(8分)在平面直角坐標系中,一次函數(shù)(a≠0)的圖象與反比例函數(shù)的圖象交于第二、第四象限內(nèi)的A、B兩點,與軸交于點C,過點A作AH⊥軸,垂足為點H,OH=3,tan∠AOH=,點B的坐標為(,-2).(1)求該反比例函數(shù)和一次函數(shù)的解析式;(2)求△AHO的周長.22.(10分)深圳國際馬拉松賽事設(shè)有A“全程馬拉松”,B“半程馬拉松”,C“嘉年華馬拉松”三個項目,小智和小慧參加了該賽事的志愿者服務(wù)工作,組委會將志愿者隨機分配到三個項目組.(1)小智被分配到A“全程馬拉松”項目組的概率為.(2)用樹狀圖或列表法求小智和小慧被分到同一個項目標組進行志愿服務(wù)的概率.23.(10分)已知拋物線y=x2﹣2x﹣3與x軸交于點A、B,與y軸交于點C,點D為OC中點,點P在拋物線上.(1)直接寫出A、B、C、D坐標;(2)點P在第四象限,過點P作PE⊥x軸,垂足為E,PE交BC、BD于G、H,是否存在這樣的點P,使PG=GH=HE?若存在,求出點P坐標;若不存在,請說明理由.(3)若直線y=x+t與拋物線y=x2﹣2x﹣3在x軸下方有兩個交點,直接寫出t的取值范圍.24.(10分)如圖,海中有兩個小島,,某漁船在海中的處測得小島D位于東北方向上,且相距,該漁船自西向東航行一段時間到達點處,此時測得小島恰好在點的正北方向上,且相距,又測得點與小島相距.(1)求的值;(2)求小島,之間的距離(計算過程中的數(shù)據(jù)不取近似值).25.(12分)(1)某學(xué)校“智慧方園”數(shù)學(xué)社團遇到這樣一個題目:如圖1,在△ABC中,點O在線段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的長.經(jīng)過社團成員討論發(fā)現(xiàn),過點B作BD∥AC,交AO的延長線于點D,通過構(gòu)造△ABD就可以解決問題(如圖2).請回答:∠ADB=°,AB=.(2)請參考以上解決思路,解決問題:如圖3,在四邊形ABCD中,對角線AC與BD相交于點O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的長.26.如圖,點E是△ABC的內(nèi)心,AE的延長線與△ABC的外接圓相交于點D.(1)若∠BAC=70°,求∠CBD的度數(shù);(2)求證:DE=DB.

參考答案一、選擇題(每題4分,共48分)1、D【解析】利用配方法把二次函數(shù)解析式化為頂點式,根據(jù)二次函數(shù)的性質(zhì)解答.【詳解】解:y=x2+4x+3=x2+4x+4﹣1=(x+2)2﹣1,則當x>﹣2時,y隨x的增大而增大,∴當x=時,y的最大值為()2+4×+3=,故選:D.【點睛】本題考查配方法把二次函數(shù)解析式化為頂點式根據(jù)二次函數(shù)性質(zhì)解答的運用2、A【分析】根據(jù)反比例函數(shù)的定義,得,分別判斷各點的乘積是否等于,即可得到答案.【詳解】解:∵反比例函數(shù)的圖象經(jīng)過點,∴;∵,故A符合題意;∵,,,故B、C、D不符合題意;故選:A.【點睛】本題考查了反比例函數(shù)的定義,解題的關(guān)鍵是熟記定義,熟練掌握.3、B【解析】試題分析:設(shè)有x個隊,每個隊都要賽(x﹣1)場,但兩隊之間只有一場比賽,由題意得:,故選B.考點:由實際問題抽象出一元二次方程.4、D【解析】根據(jù)三角函數(shù)的特殊值解答即可.【詳解】解:∵∠B,∠A均為銳角,且sinA=,cosB=,

∴∠A=30°,∠B=60°.

故選D.【點睛】本題考查特殊角的三角函數(shù)值.5、A【解析】先把(-2,1)代入y=求出k得到反比例函數(shù)解析式為y=,然后根據(jù)反比例函數(shù)圖象上點的坐標特征,通過計算各點的橫縱坐標的積進行判斷.【詳解】把(-2,1)代入y=得k=-2×1=-2,

所以反比例函數(shù)解析式為y=,

因為2×(-1)=-2,2×1=2,-2×(-1)=2,1×2=2,

所以點(2,-1)在反比例函數(shù)y=的圖象上.

故選A.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征:反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.6、A【解析】試題分析:由題意可證△AOF≌△COE,EO=FO,AF=CF=CE=AE,四邊形AECF是菱形,若∠DCF=30°,則∠FCE=60°,△EFC是等邊三角形,∵CD=AB=,∴DF=tan30°×CD=×=1,∴CF=2DF=2×1=2,∴EF=CF=2,故選A.考點:1.矩形及菱形性質(zhì);2.解直角三角形.7、B【解析】把P(﹣1,k)代入函數(shù)解析式即可求k的值.【詳解】把點P(﹣1,k)代入y=得到:k==1.故選:B.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,圖象上的點的坐標適合解析式是解題的關(guān)鍵.8、B【解析】根據(jù)中心對稱圖形的概念判斷即可.【詳解】矩形,平行四邊形,菱形是中心對稱圖形,等邊三角形不是中心對稱圖形.故選B.【點睛】本題考查了中心對稱圖形的概念,判斷中心對稱圖形的關(guān)鍵是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.9、A【分析】根據(jù)勾股定理逆定理推出∠C=90°,再根據(jù)進行計算即可;【詳解】解:∵AB=25,BC=7,CA=1,又∵,∴,∴△ABC是直角三角形,∠C=90°,∴=;故選A.【點睛】本題主要考查了銳角三角函數(shù)的定義,勾股定理逆定理,掌握銳角三角函數(shù)的定義,勾股定理逆定理是解題的關(guān)鍵.10、B【分析】直接根據(jù)相似三角形的性質(zhì)即可得出結(jié)論.【詳解】解:∵兩個相似三角形的周長比是1:2,∴它們的面積比是:1:1.故選:B.【點睛】本題考查相似三角形的性質(zhì),掌握相似三角形的周長比等于相似比,面積比等于相似比的平方是解題的關(guān)鍵.11、B【解析】設(shè)方程的兩根為x1,x2,

根據(jù)題意得x1+x2=1,

所以a2-2a=1,解得a=1或a=2,

當a=2時,方程化為x2+1=1,△=-4<1,故a=2舍去,

所以a的值為1.

故選B.12、B【分析】根據(jù)中心對稱圖形的概念逐一進行分析即可得.【詳解】第一個圖形是中心對稱圖形;第二個圖形不是中心對稱圖形;第三個圖形是中心對稱圖形;第四個圖形不是中心對稱圖形,故選B.【點睛】本題考查了中心對稱圖形,熟知中心對稱圖形是指一個圖形繞某一個點旋轉(zhuǎn)180度后能與自身完全重合的圖形是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、直線x=2【解析】試題分析:∵點(1,0),(3,0)的縱坐標相同,∴這兩點一定關(guān)于對稱軸對稱,∴對稱軸是:x==1考點:二次函數(shù)的性質(zhì)14、π【分析】根據(jù)圖示知,所以根據(jù)弧長公式求得的長.【詳解】根據(jù)圖示知,,∴的長為:.故答案為:.【點睛】本題考查了弧長的計算公式,掌握弧長的計算方法是解題的關(guān)鍵.15、<.【分析】根據(jù)反比例函數(shù)的增減性即可得出結(jié)論.【詳解】解:中,-3<0∴在每一象限內(nèi),y隨x的增大而增大∵-2<-1<0∴<故答案為:<.【點睛】本題考查了比較反比例函數(shù)值的大小,掌握反比例函數(shù)的增減性與比例系數(shù)的關(guān)系是解題的關(guān)鍵.16、17【解析】∵Rt△ABC中,∠C=90°,∴tanA=,∵,∴AC=8,∴AB==17,故答案為17.17、【分析】找出這三個特殊角的三角函數(shù)值中最小的即可.【詳解】,,∵∴故答案為:.【點睛】本題考查了特殊角的三角函數(shù)值以及最小值等知識,解題的關(guān)鍵是熟特殊角的三角函數(shù)值.18、9米【分析】由題意根據(jù)物高與影長成比例即旗桿的高度:13.5=1.6:2.4,進行分析即可得出學(xué)校旗桿的高度.【詳解】解:∵物高與影長成比例,∴旗桿的高度:13.5=1.6:2.4,∴旗桿的高度==9米.故答案為:9米.【點睛】本題考查相似三角形的應(yīng)用,解題的關(guān)鍵是理解題意,把實際問題抽象到相似三角形中,利用相似三角形的相似比,列出方程并通過解方程求出旗桿的高度.三、解答題(共78分)19、(1);(2)9;(3)存在點M的坐標為()或()使△CQM為等腰三角形且△BQM為直角三角形【分析】(1)根據(jù)拋物線經(jīng)過A、B兩點,帶入解析式,即可求得a、b的值.(2)根據(jù)PA=PB,要求四邊形PAOC的周長最小,只要P、B、C三點在同一直線上,因此很容易計算出最小周長.(3)首先根據(jù)△BQM為直角三角形,便可分為兩種情況QM⊥BC和QM⊥BO,再結(jié)合△QBM∽△CBO,根據(jù)相似比例便可求解.【詳解】解:(1)將點A(1,0),B(4,0)代入拋物線中,得:解得:所以拋物線的解析式為.(2)由(1)可知,拋物線的對稱軸為直線.連接BC,交拋物線的對稱軸為點P,此時四邊形PAOC的周長最小,最小值為OA+OC+BC=1+3+5=9.(3)當QM⊥BC時,易證△QBM∽△CBO所以,又因為△CQM為等腰三角形,所以QM=CM.設(shè)CM=x,則BM=5-x所以所以.所以QM=CM=,BM=5-x=,所以BM:CM=4:3.過點M作NM⊥OB于N,則MN//OC,所以,即,所以,所以點M的坐標為()當QM⊥BO時,則MQ//OC,所以,即設(shè)QM=3t,則BQ=4t,又因為△CQM為等腰三角形,所以QM=CM=3t,BM=5-3t又因為QM2+QB2=BM2,所以(3t)2+(4t)2=(5-3t)2,解得MQ=3t=,,所以點M的坐標為().綜上所述,存在點M的坐標為()或()使△CQM為等腰三角形且△BQM為直角三角形【點睛】本題是一道二次函數(shù)的綜合型題目,難度系數(shù)較高,關(guān)鍵在于根據(jù)圖形化簡問題,這道題涉及到一種分類討論的思想,這是這道題的難點所在,分類討論思想的關(guān)鍵在于根據(jù)直角三角形的直角進行分類的.20、【分析】由三角形面積和邊長可求出對應(yīng)邊的高,再由勾股定理求出余弦所需要的邊長即可解答.【詳解】解:過點點作于點,∵的面積,∴,在中,由勾股定理得,所以【點睛】本題考查了解直角三角形,掌握余弦的定義(余弦=鄰邊:斜邊)和用面積求高是解題的關(guān)鍵.21、(1)一次函數(shù)為,反比例函數(shù)為;(2)△AHO的周長為12【解析】分析:(1)根據(jù)正切函數(shù)可得AH=4,根據(jù)反比例函數(shù)的特點k=xy為定值,列出方程,求出k的值,便可求出反比例函數(shù)的解析式;根據(jù)k的值求出B兩點的坐標,用待定系數(shù)法便可求出一次函數(shù)的解析式.(2)由(1)知AH的長,根據(jù)勾股定理,可得AO的長,根據(jù)三角形的周長,可得答案.詳解:(1)∵tan∠AOH==∴AH=OH=4∴A(-4,3),代入,得k=-4×3=-12∴反比例函數(shù)為∴∴m=6∴B(6,-2)∴∴=,b=1∴一次函數(shù)為(2)△AHO的周長為:3+4+5=12點睛:此題考查的是反比例函數(shù)圖象上點的坐標特點及用待定系數(shù)法求一次函數(shù)及反比例函數(shù)的解析式.22、(1)(2)【分析】(1)直接利用概率公式可得;(2)記這三個項目分別為A、B、C,畫樹狀圖列出所有等可能結(jié)果,從中找到符合條件的結(jié)果數(shù),再根據(jù)概率公式計算可得.【詳解】(1)小智被分配到A“全程馬拉松”項目組的概率為,故答案為:.(2)畫樹狀圖為:共有9種等可能的結(jié)果數(shù),其中小智和小慧被分配到同一個項目組的結(jié)果數(shù)為3,所以小智和小慧被分到同一個項目組進行志愿服務(wù)的概率為.【點睛】本題主要考察概率,熟練掌握概率公式是解題關(guān)鍵.23、(1)A(﹣1,0),B(3,0),C(0,﹣3),D(0,﹣);(2)存在,(,﹣);(3)﹣<t<﹣1【分析】(1)可通過二次函數(shù)的解析式列出方程,即可求出相關(guān)點的坐標;(2)存在,先求出直線BC和直線BD的解析式,設(shè)點P的坐標為(x,x2﹣2x﹣3),則E(x,0),H(x,x﹣),G(x,x﹣3),列出等式方程,即可求出點P坐標;(3)求出直線y=x+t經(jīng)過點B時t的值,再列出當直線y=x+t與拋物線y=x2﹣2x﹣3只有一個交點時的方程,使根的判別式為0,求出t的值,即可寫出t的取值范圍.【詳解】解:(1)在y=x2﹣2x﹣3中,當x=0時,y=﹣3;當y=0時,x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),C(0,﹣3),∵D為OC的中點,∴D(0,﹣);(2)存在,理由如下:設(shè)直線BC的解析式為y=kx﹣3,將點B(3,0)代入y=kx﹣3,解得k=1,∴直線BC的解析式為y=x﹣3,設(shè)直線BD的解析式為y=mx﹣,將點B(3,0)代入y=mx﹣,解得m=,∴直線BD的解析式為y=x﹣,設(shè)點P的坐標為(x,x2﹣2x﹣3),則E(x,0),H(x,x﹣),G(x,x﹣3),∴EH=﹣x+,HG=x﹣﹣(x﹣3)=﹣x+,GP=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,當EH=HG=GP時,﹣x+=﹣x2+3x,解得x1=,x2=3(舍去),∴點P的坐標為(,﹣);(3)當直線y=x+t經(jīng)過點B時,將點B(3,0)代入y=x+t,得,t=﹣1,當直線y=x+t與拋物線y=x2﹣2x﹣3只有一個交點時,方程x+t=x2﹣2x﹣3只有一個解,即x2﹣x﹣3﹣t=0,△=()2﹣4(﹣3﹣t)=0,解得t=﹣,∴由圖2可以看出,當直線y=x+t與拋物線y=x2﹣2x﹣3在x軸下方有兩個交點時,t的取值范圍為:﹣<t<﹣1時.【點睛】本題考查了二次函數(shù)與一次函數(shù)的綜合,涉及了求二次函數(shù)與坐標軸的交點坐標、一次函數(shù)的解析式、解一元二次方程、確定一次函數(shù)與二次函數(shù)的圖像的交點個數(shù),靈活運用一次函數(shù)與二次函數(shù)的圖像與性質(zhì)是解題的關(guān)鍵.24、(1);(2)小島、相距.【解析】(1)如圖,過點作,垂足為,在中,先求出DE長,然后在在中,根據(jù)正弦的定義由即可求得答案;(2)過點作,垂足為,則四邊形BEDF是矩形,在中,利用勾股定理求出BE長,再由矩形的性質(zhì)可得,,繼而得CF長,在中,利用勾股定理求出CD長即可.【詳解】(1)如圖,過點作,垂足為,在中,,,∴在中,,∴;(2)過點作,垂足為,則四邊形BEDF是矩形,在中,,,∴,∵四邊形是矩形,∴,,∴,在中,,因此小島、相距.【點睛】本題考查了解直角三角形的應(yīng)用,正確添加輔助線構(gòu)建直角三角形,靈活運用相應(yīng)三角形函數(shù)是解題的關(guān)鍵.25、(1)75;4;(2)CD=4.【分析】(1)根據(jù)平行線的性質(zhì)可得出∠ADB=∠OAC=75°,結(jié)合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性質(zhì)可求出OD的值,進而可得出AD的值,由三角形內(nèi)角和定理可得出∠ABD=75°=∠ADB,由等角對等邊可得出AB=AD=4,此題得解;(2)過點B作BE∥AD交AC于點E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的長度,再在Rt△CAD中,利用勾股定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論