黑龍江省哈爾濱市阿城區(qū)2022-2023學(xué)年數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
黑龍江省哈爾濱市阿城區(qū)2022-2023學(xué)年數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
黑龍江省哈爾濱市阿城區(qū)2022-2023學(xué)年數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
黑龍江省哈爾濱市阿城區(qū)2022-2023學(xué)年數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
黑龍江省哈爾濱市阿城區(qū)2022-2023學(xué)年數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.有一則笑話:媽媽正在給一對雙胞胎洗澡,先洗哥哥,再洗弟弟.剛把兩人洗完,就聽到兩個小家伙在床上笑.“你們笑什么?”媽媽問.“媽媽!”老大回答,“您給弟弟洗了兩回,可是還沒給我洗呢!”此事件發(fā)生的概率為()A. B. C. D.12.如圖所示,△ABC內(nèi)接于⊙O,∠C=45°.AB=4,則⊙O的半徑為()A. B.4C. D.53.在同一平面直角坐標(biāo)系中,函數(shù)y=ax+b與y=bx2+ax的圖象可能是()A. B. C. D.4.淶水縣某種植基地2018年蔬菜產(chǎn)量為100噸,預(yù)計2020年蔬菜產(chǎn)量達到120噸,求蔬菜產(chǎn)量的年平均增長率,設(shè)蔬菜產(chǎn)量的年平均增長率為x,則可列方程為()A. B.C. D.5.用一個圓心角為120°,半徑為4的扇形作一個圓錐的側(cè)面.則這個圓錐的底面圓的半徑為()A. B.1 C. D.26.如圖,點、分別在的邊、上,且與不平行.下列條件中,能判定與相似的是()A. B. C. D.7.如果小強將飛鏢隨意投中如圖所示的正方形木板,那么P(飛鏢落在陰影部分的概率)為()A. B. C. D.8.如圖,矩形ABCD中,連接AC,延長BC至點E,使,連接DE,若,則∠E的度數(shù)是()A.65° B.60° C.50° D.40°9.某同學(xué)推鉛球,鉛球出手高度是m,出手后鉛球運行高度y(m)與水平距離x(m)之間的函數(shù)表達式為,則該同學(xué)推鉛球的成績?yōu)椋ǎ〢.9m B.10m C.11m D.12m10.拋物線的頂點為,與軸交于點,則該拋物線的解析式為()A. B.C. D.11.將二次函數(shù)y=x2的圖象沿y軸向上平移2個單位長度,再沿x軸向左平移3個單位長度,所得圖象對應(yīng)的函數(shù)表達式為()A.y=(x+3)2+2 B.y=(x﹣3)2+2 C.y=(x+2)2+3 D.y=(x﹣2)2+312.如圖,點在線段上,在的同側(cè)作等腰和等腰,與、分別交于點、.對于下列結(jié)論:①;②;③.其中正確的是()A.①②③ B.① C.①② D.②③二、填空題(每題4分,共24分)13.已知⊙O的直徑AB=20,弦CD⊥AB于點E,且CD=16,則AE的長為_______.14.若關(guān)于x的方程x2+2x﹣m=0(m是常數(shù))有兩個相等的實數(shù)根,則反比例函數(shù)y=經(jīng)過第_____象限.15.某10人數(shù)學(xué)小組的一次測試中,有4人的成績都是80分,其他6人的成績都是90分,則這個小組成績的平均數(shù)等于_____分.16.如圖,點O為正六邊形ABCDEF的中心,點M為AF中點,以點O為圓心,以O(shè)M的長為半徑畫弧得到扇形MON,點N在BC上;以點E為圓心,以DE的長為半徑畫弧得到扇形DEF,把扇形MON的兩條半徑OM,ON重合,圍成圓錐,將此圓錐的底面半徑記為r1;將扇形DEF以同樣方法圍成的圓錐的底面半徑記為r2,則r1:r2=_____.17.已知扇形的圓心角為,所對的弧長為,則此扇形的面積是________.18.如圖,讓此轉(zhuǎn)盤自由轉(zhuǎn)動兩次,兩次指針都落在陰影部分區(qū)域(邊界寬度忽略不記)的概率是____________.三、解答題(共78分)19.(8分)如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的邊AB=4,BC=1.若不改變矩形ABCD的形狀和大小,當(dāng)矩形頂點A在x軸的正半軸上左右移動時,矩形的另一個頂點D始終在y軸的正半軸上隨之上下移動.(1)當(dāng)∠OAD=30°時,求點C的坐標(biāo);(2)設(shè)AD的中點為M,連接OM、MC,當(dāng)四邊形OMCD的面積為時,求OA的長;(3)當(dāng)點A移動到某一位置時,點C到點O的距離有最大值,請直接寫出最大值,并求此時cos∠OAD的值.20.(8分)如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k≠0)的圖象交于A(﹣1,3),B(b,1)兩點.(1)求反比例函數(shù)的表達式;(2)在x軸上找一點P,使PA+PB的值最小,并求滿足條件的點P的坐標(biāo);(3)連接OA,OB,求△OAB的面積.21.(8分)如圖,在□ABCD中,E是AD的中點,延長CB到點F,使BF=BC,連接BE、AF.(1)求證:四邊形AFBE是平行四邊形;(2)若AB=6,AD=8,∠C=60°,求BE的長.22.(10分)學(xué)校決定每班選取名同學(xué)參加全國交通安全日細節(jié)關(guān)乎生命安全文明出行主題活動啟動儀式,班主任決定從名同學(xué)(小明、小山、小月、小玉)中通過抽簽的方式確定名同學(xué)去參加該活動.抽簽規(guī)則:將名同學(xué)的姓名分別寫在張完全相同的卡片正面,把張卡片的背面朝上,洗勻后放在桌子上,王老師先從中隨機抽取一張卡片,記下名字,再從剩余的張卡片中隨機抽取一張,記下名字.(1)小剛被抽中是___事件,小明被抽中是____事件(填不可能、必然、隨機),第一次抽取卡片抽中是小玉的概率是______;(2)試用畫樹狀圖或列表的方法表示這次抽簽所有可能的結(jié)果,并求出小月被抽中的概率.23.(10分)定義:有兩個相鄰內(nèi)角和等于另兩個內(nèi)角和的一半的四邊形稱為半四邊形,這兩個角的夾邊稱為對半線.(1)如圖1,在對半四邊形中,,求與的度數(shù)之和;(2)如圖2,為銳角的外心,過點的直線交,于點,,,求證:四邊形是對半四邊形;(3)如圖3,在中,,分別是,上一點,,,為的中點,,當(dāng)為對半四邊形的對半線時,求的長.24.(10分)空間任意選定一點,以點為端點作三條互相垂直的射線,,.這三條互相垂直的射線分別稱作軸、軸、軸,統(tǒng)稱為坐標(biāo)軸,它們的方向分別為(水平向前),(水平向右),(豎直向上)方向,這樣的坐標(biāo)系稱為空間直角坐標(biāo)系.將相鄰三個面的面積記為,且的小長方體稱為單位長方體,現(xiàn)將若干個單位長方體在空間直角坐標(biāo)系內(nèi)進行碼放,要求碼放時將單位長方體所在的面與軸垂直,所在的面與軸垂直,所在的面與軸垂直,如圖所示.若將軸方向表示的量稱為幾何體碼放的排數(shù),軸方向表示的量稱為幾何體碼放的列數(shù),軸方向表示的量稱為幾何體碼放的層數(shù);如圖是由若干個單位長方體在空間直角坐標(biāo)內(nèi)碼放的一個幾何體,其中這個幾何體共碼放了排列層,用有序數(shù)組記作(1,2,6),如圖的幾何體碼放了排列層,用有序數(shù)組記作(2,3,4).這樣我們就可用每一個有序數(shù)組表示一種幾何體的碼放方式.(1)有序數(shù)組(3,2,4)所對應(yīng)的碼放的幾何體是_____;(2)圖是由若干個單位長方體碼放的一個幾何體的三視圖,則這種碼放方式的有序數(shù)組為(___,____,____),組成這個幾何體的單位長方體的個數(shù)為____個;(3)為了進一步探究有序數(shù)組的幾何體的表面積公式,某同學(xué)針對若干個單位長方體進行碼放,制作了下列表格:根據(jù)以上規(guī)律,請直接寫出有序數(shù)組的幾何體表面積的計算公式;(用表示)(4)當(dāng)時,對由個單位長方體碼放的幾何體進行打包,為了節(jié)約外包裝材料,我們可以對個單位長方體碼放的幾何體表面積最小的規(guī)律進行探究,請你根據(jù)自己探究的結(jié)果直接寫出使幾何體表面積最小的有序數(shù)組,這個有序數(shù)組為(___,___,___),此時求出的這個幾何體表面積的大小為________.(縫隙不計)25.(12分)為了解學(xué)生的藝術(shù)特長發(fā)展情況,某校決定圍繞“在舞蹈、樂器、聲樂、戲曲、其它活動項目中,你最喜歡哪一項活動(每人只限一項)”的問題,在全校范圍內(nèi)隨機抽取部分學(xué)生進行問卷調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖解答下列問題:(1)扇形統(tǒng)計圖中“戲曲”部分對應(yīng)的扇形的圓心角為度;(2)若在“舞蹈、樂器、聲樂、戲曲”項目中任選兩項成立課外興趣小組,請用列舉法求恰好選中“舞蹈、聲樂”這兩項的概率.26.如圖,的直徑為,點在上,點,分別在,的延長線上,,垂足為,.(1)求證:是的切線;(2)若,,求的長.

參考答案一、選擇題(每題4分,共48分)1、A【分析】根據(jù)概率是指某件事發(fā)生的可能性為多少解答即可.【詳解】解:此事件發(fā)生的概率故選A.【點睛】本題考查了概率的意義,正確理解概率的含義是解決本題的關(guān)鍵.2、A【解析】試題解析:連接OA,OB.∴在中,故選A.點睛:在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半.3、A【分析】根據(jù)a、b的正負不同,則函數(shù)y=ax+b與y=bx2+ax的圖象所在的象限也不同,針對a、b進行分類討論,從而可以選出正確選項.【詳解】若a>0,b>0,則y=ax+b經(jīng)過一、二、三象限,y=bx2+ax開口向上,頂點在y軸左側(cè),故B、C錯誤;若a<0,b<0,則y=ax+b經(jīng)過二、三、四象限,y=bx2+ax開口向下,頂點在y軸左側(cè),故D錯誤;若a>0,b<0,則y=ax+b經(jīng)過一、三、四象限,y=bx2+ax開口向下,頂點在y軸右側(cè),故A正確;故選A.【點睛】本題考查二次函數(shù)的圖象、一次函數(shù)的圖象,解題的關(guān)鍵是明確一次函數(shù)圖象和二次函數(shù)圖象的特點,利用分類討論的數(shù)學(xué)思想解答.4、A【分析】根據(jù)2020年的產(chǎn)量=2018年的產(chǎn)量×(1+年平均增長率)2,把相關(guān)數(shù)值代入即可.【詳解】解:設(shè)該種植基地蔬菜產(chǎn)量的年平均增長率(百分?jǐn)?shù))為x,根據(jù)題意,得,故選A.【點睛】此題考查了一元二次方程的應(yīng)用(增長率問題).解題的關(guān)鍵在于理清題目的含義,找到2020年的產(chǎn)量的代數(shù)式,根據(jù)條件找準(zhǔn)等量關(guān)系,列出方程.5、A【分析】根據(jù)扇形的弧長公式求出弧長,根據(jù)圓錐的底面周長等于它的側(cè)面展開圖的弧長求出半徑.【詳解】解:設(shè)圓錐底面的半徑為r,

扇形的弧長為:,∵圓錐的底面周長等于它的側(cè)面展開圖的弧長,

∴根據(jù)題意得2πr=,解得:r=,故選A.【點睛】本題考查了圓錐的計算,掌握弧長公式、周長公式和圓錐與扇形的對應(yīng)關(guān)系是解題的關(guān)鍵.6、A【分析】根據(jù)兩邊對應(yīng)成比例且夾角相等的兩個三角形相似即可求解.【詳解】解:在與中,∵,且,∴.故選:A.【點睛】此題考查了相似三角形的判定:(1)平行線法:平行于三角形的一邊的直線與其他兩邊相交,所構(gòu)成的三角形與原三角形相似;(2)三邊法:三組對應(yīng)邊的比相等的兩個三角形相似;(3)兩邊及其夾角法:兩組對應(yīng)邊的比相等且夾角相等的兩個三角形相似;(4)兩角法:有兩組角對應(yīng)相等的兩個三角形相似.7、C【解析】先求大正方形和陰影部分的面積分別為36和4,再用面積比求概率.【詳解】設(shè)小正方形的邊長為1,則正方形的面積為6×6=36,陰影部分面積為,所以,P落在三角形內(nèi)的概率是.故選C.【點睛】本題考核知識點:幾何概率.解答本題的關(guān)鍵是理解幾何概率的概念,即:概率=相應(yīng)的面積與總面積之比.分別求出相關(guān)圖形面積,再求比.8、A【分析】連接BD,與AC相交于點O,則BD=AC=BE,得△BDE是等腰三角形,由OB=OC,得∠OBC=50°,即可求出∠E的度數(shù).【詳解】解:如圖,連接BD,與AC相交于點O,∴BD=AC=BE,OB=OC,∴△BDE是等腰三角形,∠OBC=∠OCB,∵,∠ABC=90°,∴∠OBC=,∴;故選擇:A.【點睛】本題考查了矩形的性質(zhì),等腰三角形的判定和性質(zhì),三角形內(nèi)角和定理,以及直角三角形兩個銳角互余,解題的關(guān)鍵是正確作出輔助線,構(gòu)造等腰三角形進行解題.9、B【分析】根據(jù)鉛球出手高度是m,可得點(0,)在拋物線上,代入解析式得a=-,從而求得解析式,當(dāng)y=0時解一元二次方程求得x的值即可;【詳解】解:∵鉛球出手高度是m,∴拋物線經(jīng)過點(0,),代入解析式得:=16a+3,解得a=-,故解析式為:令y=0,得:,解得:x1=-2(舍去),x2=10,

則鉛球推出的距離為10m.故選:B.【點睛】本題考查二次函數(shù)的實際應(yīng)用,熟練掌握待定系數(shù)法求函數(shù)解析式是解題關(guān)鍵.10、A【分析】設(shè)出拋物線頂點式,然后將點代入求解即可.【詳解】解:設(shè)拋物線解析式為,將點代入得:,解得:a=1,故該拋物線的解析式為:,故選:A.【點睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式:一般地,當(dāng)已知拋物線上三點時,常選擇一般式,用待定系數(shù)法列三元一次方程組來求解;當(dāng)已知拋物線的頂點或?qū)ΨQ軸時,常設(shè)其解析式為頂點式來求解;當(dāng)已知拋物線與x軸有兩個交點時,可選擇設(shè)其解析式為交點式來求解.11、A【分析】直接利用二次函數(shù)的平移規(guī)律,左加右減,上加下減,進而得出答案.【詳解】解:將二次函數(shù)y=x1的圖象沿y軸向上平移1個單位長度,得到:y=x1+1,再沿x軸向左平移3個單位長度得到:y=(x+3)1+1.故選:A.【點睛】解決本題的關(guān)鍵是得到平移函數(shù)解析式的一般規(guī)律:上下平移,直接在函數(shù)解析式的后面上加,下減平移的單位;左右平移,比例系數(shù)不變,在自變量后左加右減平移的單位.12、A【解析】分析:(1)由等腰Rt△ABC和等腰Rt△ADE三邊份數(shù)關(guān)系可證;(2)通過等積式倒推可知,證明△PAM∽△EMD即可;(3)2CB2轉(zhuǎn)化為AC2,證明△ACP∽△MCA,問題可證.詳解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正確∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP?MD=MA?ME所以②正確∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四點共圓∴∠APD=∠EAD=90°∵∠CAE=180°-∠BAC-∠EAD=90°∴△CAP∽△CMA∴AC2=CP?CM∵AC=AB∴2CB2=CP?CM所以③正確故選A.點睛:本題考查了相似三角形的性質(zhì)和判斷.在等積式和比例式的證明中應(yīng)注意應(yīng)用倒推的方法尋找相似三角形進行證明,進而得到答案.二、填空題(每題4分,共24分)13、16或1【分析】結(jié)合垂徑定理和勾股定理,在Rt△OCE中,求得OE的長,則AE=OA+OE或AE=OA-OE,據(jù)此即可求解.【詳解】解:如圖,連接OC,∵⊙O的直徑AB=20∴OC=OA=OB=10∵弦CD⊥AB于點E∴CE=CD=8,在Rt△OCE中,OE=則AE=OA+OE=10+6=16,如圖:同理,此時AE=OA-OE=10-6=1,故AE的長是16或1.【點睛】本題考查勾股定理和垂徑定理的應(yīng)用,根據(jù)題意做出圖形是本題的解題關(guān)鍵,注意分類討論.14、二,四【分析】關(guān)于x的方程有唯一的一個實數(shù)根,則△=0可求出m的值,根據(jù)m的符號即可判斷反比例函數(shù)y=經(jīng)過的象限.【詳解】解:∵方程x2+2x﹣m=0(m是常數(shù))有兩個相等的實數(shù)根,∴△=22﹣4×1×(﹣m)=4+4m=0,∴m=﹣1;∴反比例函數(shù)y=經(jīng)過第二,四象限,故答案為:二,四.【點睛】本題考查的知識點是一元二次方程根與系數(shù)的關(guān)系以及反比例函數(shù)的圖象,利用根的判別式求出m的值是解此題的關(guān)鍵15、1.【分析】根據(jù)平均數(shù)的定義解決問題即可.【詳解】平均成績=(4×80+6×90)=1(分),故答案為1.【點睛】本題考查平均數(shù)的定義,解題的關(guān)鍵是掌握平均數(shù)的定義.16、【解析】分析:根據(jù)題意正六邊形中心角為120°且其內(nèi)角為120°.求出兩個扇形圓心角,表示出扇形半徑即可.詳解:連OA由已知,M為AF中點,則OM⊥AF∵六邊形ABCDEF為正六邊形∴∠AOM=30°設(shè)AM=a∴AB=AO=2a,OM=∵正六邊形中心角為60°∴∠MON=120°∴扇形MON的弧長為:則r1=a同理:扇形DEF的弧長為:則r2=r1:r2=故答案為點睛:本題考查了正六邊形的性質(zhì)和扇形面積及圓錐計算.解答時注意表示出兩個扇形的半徑.17、【分析】利用弧長公式列出關(guān)系式,把圓心角與弧長代入求出扇形的半徑,即可確定出扇形的面積.【詳解】設(shè)扇形所在圓的半徑為r.∵扇形的圓心角為240°,所對的弧長為,∴l(xiāng),解得:r=6,則扇形面積為rl=.故答案為:.【點睛】本題考查了扇形面積的計算,以及弧長公式,熟練掌握公式是解答本題的關(guān)鍵.18、【分析】先將非陰影區(qū)域分成兩等份,然后根據(jù)列表格列舉所有等可能的結(jié)果與指針都落在陰影區(qū)域的情況,再利用概率公式即可求解.【詳解】解:如圖,將非陰影區(qū)域分成兩等份,設(shè)三份區(qū)域分別為A,B,C,其中C為陰影區(qū)域,列表格如下,由表可知,共有9種結(jié)果,且每種結(jié)果出現(xiàn)的可能性相同,其中兩次指針都落在陰影區(qū)域的有1種,為(C,C),所以兩次指針都落在陰影區(qū)域的概率為P=.故答案為:【點睛】本題考查了列表法或樹狀圖求兩步事件概率問題,將非陰影區(qū)域分成兩等份,保證是等可能事件是解答此題的關(guān)鍵.三、解答題(共78分)19、(1)點C的坐標(biāo)為(2,3+2);(2)OA=3;(3)OC的最大值為8,cos∠OAD=.【分析】(1)作CE⊥y軸,先證∠CDE=∠OAD=30°得CE=CD=2,DE=,再由∠OAD=30°知OD=AD=3,從而得出點C坐標(biāo);(2)先求出S△DCM=1,結(jié)合S四邊形OMCD=知S△ODM=,S△OAD=9,設(shè)OA=x、OD=y(tǒng),據(jù)此知x2+y2=31,xy=9,得出x2+y2=2xy,即x=y(tǒng),代入x2+y2=31求得x的值,從而得出答案;(3)由M為AD的中點,知OM=3,CM=5,由OC≤OM+CM=8知當(dāng)O、M、C三點在同一直線時,OC有最大值8,連接OC,則此時OC與AD的交點為M,ON⊥AD,證△CMD∽△OMN得,據(jù)此求得MN=,ON=,AN=AM﹣MN=,再由OA=及cos∠OAD=可得答案.【詳解】(1)如圖1,過點C作CE⊥y軸于點E,∵矩形ABCD中,CD⊥AD,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=30°,∴在Rt△CED中,CE=CD=2,DE==2,在Rt△OAD中,∠OAD=30°,∴OD=AD=3,∴點C的坐標(biāo)為(2,3+2);(2)∵M為AD的中點,∴DM=3,S△DCM=1,又S四邊形OMCD=,∴S△ODM=,∴S△OAD=9,設(shè)OA=x、OD=y(tǒng),則x2+y2=31,xy=9,∴x2+y2=2xy,即x=y(tǒng),將x=y(tǒng)代入x2+y2=31得x2=18,解得x=3(負值舍去),∴OA=3;(3)OC的最大值為8,如圖2,M為AD的中點,∴OM=3,CM==5,∴OC≤OM+CM=8,當(dāng)O、M、C三點在同一直線時,OC有最大值8,連接OC,則此時OC與AD的交點為M,過點O作ON⊥AD,垂足為N,∵∠CDM=∠ONM=90°,∠CMD=∠OMN,∴△CMD∽△OMN,∴,即,解得MN=,ON=,∴AN=AM﹣MN=,在Rt△OAN中,OA=,∴cos∠OAD=.【點睛】本題是四邊形的綜合問題,解題的關(guān)鍵是掌握矩形的性質(zhì)、勾股定理、相似三角形的判定與性質(zhì)等知識點.20、(1);(2)點P的坐標(biāo)為(﹣,0);(3)1【分析】(1)根據(jù)待定系數(shù)法,即可得到答案;(2)先求出點B的坐標(biāo),作點B關(guān)于x軸的對稱點D,連接AD,交x軸于點P,此時PA+PB的值最小,再求出AD所在直線的解析式,進而即可求解;(3)設(shè)直線AB與y軸交于E點,根據(jù)S△OAB=S△OBE﹣S△AOE,即可求解.【詳解】(1)將點A(﹣1,3)代入y=得:3=,解得:k=﹣3,∴反比例函數(shù)的表達式為:y=﹣;(2)把B(b,1)代入y=x+1得:b+1=1,解得:b=﹣3,∴點B的坐標(biāo)為(﹣3,1),作點B關(guān)于x軸的對稱點D,連接AD,交x軸于點P,此時PA+PB的值最小,如圖,∵點B的坐標(biāo)為(﹣3,1),∴點D的坐標(biāo)為(﹣3,﹣1).設(shè)直線AD的函數(shù)表達式為:y=mx+n,將點A(﹣1,3)、D(﹣3,﹣1)代入y=mx+n,得,解得,∴直線AD的函數(shù)表達式為:y=2x+5,當(dāng)y=0時,2x+5=0,解得:x=﹣,∴點P的坐標(biāo)為(﹣,0);(3)設(shè)直線AB與y軸交于E點,如圖,令x=0,則y=0+1=1,則點E的坐標(biāo)為(0,1),∴S△OAB=S△OBE﹣S△AOE=×1×3﹣×1×1=1.【點睛】本題主要考查反比例函數(shù)的圖象和性質(zhì)與一次函數(shù)的綜合,掌握“馬飲水”模型和割補法求面積,是解題的關(guān)鍵.21、(1)證明見解析;(2).【分析】(1)根據(jù)平行四邊形的性質(zhì)證明,再由一組對邊平行而且相等的四邊形是平行四邊形判定即可判定;

(2)過點A作AG⊥BF于G,構(gòu)造30讀直角三角形,利用平行四邊形的性質(zhì)和勾股定理解答即可.【詳解】證明:(1)∵四邊形為平行四邊形,∴,,又∵是的中點,,∴,又∵,∴四邊形是平行四邊形.(2)過點作于,由可知:,∴,∴,又∵,,∴,,∴,在中,由勾股定理得:,在中,由勾股定理得:,∴.【點睛】本題考查了平行四邊形的判定與性質(zhì)、勾股定理.平行四邊形的判定方法共有4種,應(yīng)用時要認真領(lǐng)會它們之間的聯(lián)系與區(qū)別,同時要根據(jù)條件合理、靈活地選擇方法.22、(1)不可能;隨機;;(2).【分析】(1)根據(jù)隨機事件和不可能事件的概念及概率公式解答可得;

(2)列舉出所有情況,看所求的情況占總情況的多少即可.【詳解】(1)小剛不在班主任決定的名同學(xué)(小明、小山、小月、小玉)之中,所以“小剛被抽中”是不可能事件;“小明被抽中”是隨機事件,第一次抽取卡片有4種等可能結(jié)果,其中小玉被抽中的有1種結(jié)果,所以第一次抽取卡片抽中是小玉的概率是;故答案為:不可能、隨機、;(2)解:A表示小明,B表示小山,C表示小月,D表示小玉,則畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中抽到C有6種,∴P(抽中小月)=.【點睛】本題主要考查了樹狀圖或列表法求概率,列表法可以不重復(fù)不遺漏地列出所有可能的結(jié)果,適用于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時還要注意是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.23、(1);(2)詳見解析;(3)5.25.【分析】(1)根據(jù)四邊形內(nèi)角和與對半四邊形的定義即可求解;(2)根據(jù)三角形外心的性質(zhì)得,得到,從而求出=60°,再得到,根據(jù)對半四邊形的定義即可證明;(3)先根據(jù)為對半四邊形的對半線得到,故可證明為等邊三角形,再根據(jù)一線三等角得到,故,列出比例式即可求出AD,故可求解AC的長.【詳解】(1)∵四邊形內(nèi)角和為∴,∵∴=則,∴(2)連結(jié),由三角形外心的性質(zhì)可得,所以,,所以,則在四邊形中,,則另兩個內(nèi)角之和為,所以四邊形為對半四邊形;(3)若為對半線,則,∴所以為等邊三角形∵∴又∴∵∴,∴∵F為DE中點,故∴∴【點睛】此題主要考查相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟知根據(jù)題意弄懂對半四邊形,利用相似三角形的性質(zhì)進行求解.24、(1)B;(2);;;;(3);(4);;;.【分析】(1)根據(jù)有序數(shù)組中x、y和z表示的實際意義即可得出結(jié)論;(2)根據(jù)三視圖的定義和有序數(shù)組中x、y和z表示的實際意義即可得出結(jié)論;(3)根據(jù)題意,分別從不同方向找出面積為、和的長方形,用含x、y、z的式子表示出它們的個數(shù),然后根據(jù)表面積公式計算即可;(4)由題意可知:xyz=12,而12=1×1×12=1×2×6=1×3×4=2×2×3,然后分類討論,根據(jù)(3)的公式分別求出在每一種情況下的最小值,最后通過比較找出最小的即可得出結(jié)論.【詳解】解:(1)有序數(shù)組(3,2,4)表示3排2列4層,故B選項符合故選:B.(2)由左視圖和俯視圖可知:該幾何體共碼放了2排,由主視圖和俯視圖可知:該幾何體共碼放了3列,由主視圖和左視圖可知:該幾何體共碼放了2層,故這種碼放方式的有序數(shù)組為(,,);組成這個幾何體的單位長方體的個數(shù)為2×3×2=;故答案為:;;;;(3)根據(jù)題意可知:從幾何體的前面和后面看:面積為的長方形共有2yz個,從幾何體的左面和右面看:面積為的長方形共有2xz個,從幾何體的上面和下面看:面積為的長方形共有2xy個,∴幾何體表面積(4)由題意可知:xyz=12,而12=1×1×12=1×2×6=1×3×4=2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論