




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,在中,D在AC邊上,,O是BD的中點,連接AO并延長交BC于E,則()A.1:2 B.1:3 C.1:4 D.2:32.如圖,⊙C過原點,與x軸、y軸分別交于A、D兩點.已知∠OBA=30°,點D的坐標為(0,2),則⊙C半徑是()A. B. C. D.23.已知x=3是關于x的一元二次方程x2﹣2x﹣m=0的根,則該方程的另一個根是()A.3 B.﹣3 C.1 D.﹣14.拋擲一枚均勻的骰子,所得的點數能被3整除的概率為()A. B. C. D.5.已知x2-2x=8,則3x2-6x-18的值為(
)A.54
B.6
C.-10
D.-186.在RtABC中,∠C=90°,如果,那么的值是()A.90° B.60° C.45° D.30°7.如圖,在矩形中,,為邊的中點,將繞點順時針旋轉,點的對應點為,點的對應點為,過點作交于點,連接、交于點,現有下列結論:①;②;③;④點為的外心.其中正確的是()A.①④ B.①③ C.③④ D.②④8.下列函數中,是的反比例函數()A. B. C. D.9.如圖,正方形ABCD和正方形CGFE的頂點C,D,E在同一條直線上,頂點B,C,G在同一條直線上.O是EG的中點,∠EGC的平分線GH過點D,交BE于點H,連接FH交EG于點M,連接OH.以下四個結論:①GH⊥BE;②△EHM∽△GHF;③﹣1;④=2﹣,其中正確的結論是()A.①②③ B.①②④ C.①③④ D.②③④10.如圖,△ABC中,點D為邊BC的點,點E、F分別是邊AB、AC上兩點,且EF∥BC,若AE:EB=m,BD:DC=n,則()A.若m>1,n>1,則2S△AEF>S△ABD B.若m>1,n<1,則2S△AEF<S△ABDC.若m<1,n<1,則2S△AEF<S△ABD D.若m<1,n>1,則2S△AEF<S△ABD二、填空題(每小題3分,共24分)11.如果將拋物線平移,頂點移到點P(3,-2)的位置,那么所得新拋物線的表達式為___________.12.如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC繞點C順時針旋轉得△A1B1C,當A1落在AB邊上時,連接B1B,取BB1的中點D,連接A1D,則A1D的長度是________.13.二次函數y=+2的頂點坐標為.14.如圖,OA、OB是⊙O的半徑,CA、CB是⊙O的弦,∠ACB=35°,OA=2,則圖中陰影部分的面積為_____.(結果保留π)15.如圖,在平面直角坐標系中,已知A(1,0),D(3,0),△ABC與△DEF位似,原點O是位似中心,若AB=2,則DE=______.16.將拋物線向左平移個單位,得到新的解析式為________.17.如圖,一組等距的平行線,點A、B、C分別在直線l1、l6、l4上,AB交l3于點D,AC交l3于點E,BC交于l5點F,若△DEF的面積為1,則△ABC的面積為_____.18.一天晚上,小偉幫助媽媽清洗兩個只有顏色不同的有蓋茶杯,突然停電了,小偉只好把杯蓋和茶杯隨機地搭配在一起,則顏色搭配正確的概率是_____.三、解答題(共66分)19.(10分)如圖,已知直線y=﹣x+4與反比例函數的圖象相交于點A(﹣2,a),并且與x軸相交于點B.(1)求a的值;(2)求反比例函數的表達式;(3)求△AOB的面積.20.(6分)解方程:(1)(x+1)2﹣9=0(2)x2﹣4x﹣45=021.(6分)計算:2cos60°+4sin60°?tan30°﹣cos45°22.(8分)萬州區某民營企業生產的甲、乙兩種產品,已知2件甲商品的出廠總價與3件乙商品的出廠總價相同,3件甲商品的出廠總價比2件乙商品的出廠總價多150元.(1)求甲、乙商品的出廠單價分別是多少元?(2)為促進萬州經濟持續健康發展,為商家搭建展示平臺,為行業創造交流機會,2019年萬州區舉辦了多場商品展銷會.外地一經銷商計劃購進甲商品200件,購進乙商品的數量是甲的4倍,恰逢展銷會期間該企業正在對甲商品進行降價促銷活動,甲商品的出廠單價降低了,該經銷商購進甲的數量比原計劃增加了,乙的出廠單價沒有改變,該經銷商購進乙的數量比原計劃減少了,結果該經銷商付出的總貨款與原計劃的總貨款恰好相同,求的值.23.(8分)(1)解方程:x2+4x-1=0(2)已知α為銳角,若,求的度數.24.(8分)如圖,同學們利用所學知識去測量海平面上一個浮標到海岸線的距離.在一筆直的海岸線l上有A、B兩個觀測站,A在B的正東方向,小宇同學在A處觀測得浮標在北偏西60°的方向,小英同學在距點A處60米遠的B點測得浮標在北偏西45°的方向,求浮標C到海岸線l的距離(結果精確到0.01m).25.(10分)現如今,“垃圾分類”意識已深入人心,垃圾一般可分為:可回收物、廚余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了兩袋垃圾.(1)直接寫出甲所拿的垃圾恰好是“廚余垃圾”的概率;(2)求乙所拿的兩袋垃圾不同類的概率.26.(10分)如圖,已知圓錐的底面半徑是2,母線長是6.(1)求這個圓錐的高和其側面展開圖中∠ABC的度數;(2)如果A是底面圓周上一點,從點A拉一根繩子繞圓錐側面一圈再回到A點,求這根繩子的最短長度.
參考答案一、選擇題(每小題3分,共30分)1、B【分析】過O作BC的平行線交AC與G,由中位線的知識可得出,根據已知和平行線分線段成比例得出,再由同高不同底的三角形中底與三角形面積的關系可求出的比.【詳解】解:如圖,過O作,交AC于G,∵O是BD的中點,∴G是DC的中點.又,設,又,,故選B.【點睛】考查平行線分線段成比例及三角形的中位線的知識,難度較大,注意熟練運用中位線定理和三角形面積公式.2、B【解析】連接AD∵∠AOD=90°,∴AD是圓的直徑.在直角三角形AOD中,∠D=∠B=30°,OD=2,∴AD=,則圓的半徑是.故選B.點睛:連接AD.根據90°的圓周角所對的弦是直徑,得AD是直徑,根據等弧所對的圓周角相等,得∠D=∠B=30°,運用解直角三角形的知識即可求解.3、D【分析】設方程的另一根為t,根據根與系數的關系得到3+t=2,然后解關于t的一次方程即可.【詳解】設方程的另一根為t,
根據題意得3+t=2,
解得t=﹣1.
即方程的另一根為﹣1.
所以D選項是正確的.【點睛】本題考查了根與系數的關系:是一元二次方程的兩根時,,.4、B【解析】拋擲一枚骰子有1、2、3、4、5、6種可能,其中所得的點數能被3整除的有3、6這兩種,∴所得的點數能被3整除的概率為,故選B.【點睛】本題考查了簡單的概率計算,熟記概率的計算公式是解題的關鍵.5、B【解析】所求式子前兩項提取3變形后,將已知等式變形后代入計算即可求出值.【詳解】∵x2?2x=8,∴3x2?1x?18=3(x2?2x)?18=24?18=1.故選:B.【點睛】此題考查了代數式求值,利用了整體代入的思想,是一道基本題型.6、C【分析】根據銳角三角函數的定義解得即可.【詳解】解:由已知,,∵∴∵∠C=90°∴=45°故選:C【點睛】本題考查了銳角三角函數的定義,解答關鍵是根據定義和已知條件構造等式求解.7、B【分析】根據全等三角形的性質以及線段垂直平分線的性質,即可得出;根據,且,即可得出,再根據,即可得出不成立;根據,,運用射影定理即可得出,據此可得成立;根據不是的中點,可得點不是的外心.【詳解】解:為邊的中點,,又,,,,,又,垂直平分,,,故①正確;如圖,延長至,使得,由,,可得,可設,,則,由,,可得,,,,由,可得,而,,,即,不成立,故②錯誤;,,,又,,,故③正確;,是的外接圓的直徑,,當時,,不是的中點,點不是的外心,故④錯誤.綜上所述,正確的結論有①③,故選:B.【點睛】本題主要考查了相似三角形的判定與性質,全等三角形的判定與性質,矩形的性質以及旋轉的性質的綜合應用,解決問題的關鍵是運用全等三角形的對應邊相等以及相似三角形的對應邊成比例進行推導,解題時注意:三角形外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心,故外心到三角形三個頂點的距離相等.8、A【分析】根據形如(k為常數,k≠0)的函數稱為反比例函數.其中x是自變量,y是因變量,自變量x的取值范圍是不等于0的一切實數.分別對各選項進行分析即可.【詳解】A.是反比例函數,正確;B.是二次函數,錯誤;C.是一次函數,錯誤;D.,y是的反比例函數,錯誤.故選:A.【點睛】本題考查了反比例函數的定義.反比例函數解析式的一般形式為(k≠0),也可轉化為y=kx-1(k≠0)的形式,特別注意不要忽略k≠0這個條件.9、A【分析】由四邊形ABCD和四邊形CGFE是正方形,得出△BCE≌△DCG,推出∠BEC+∠HDE=90°,從而得GH⊥BE;由GH是∠EGC的平分線,得出△BGH≌△EGH,再由O是EG的中點,利用中位線定理,得HO∥BG且HO=BG;由△EHG是直角三角形,因為O為EG的中點,所以OH=OG=OE,得出點H在正方形CGFE的外接圓上,根據圓周角定理得出∠FHG=∠EHF=∠EGF=45°,∠HEG=∠HFG,從而證得△EHM∽△GHF;設HN=a,則BC=2a,設正方形ECGF的邊長是2b,則NC=b,CD=2a,由HO∥BG,得出△DHN∽△DGC,即可得出,得到,即a2+2ab-b2=0,從而求得,設正方形ECGF的邊長是2b,則EG=2b,得到HO=b,通過證得△MHO∽△MFE,得到,進而得到,進一步得到.【詳解】解:如圖,∵四邊形ABCD和四邊形CGFE是正方形,∴BC=CD,CE=CG,∠BCE=∠DCG,在△BCE和△DCG中,∴△BCE≌△DCG(SAS),∴∠BEC=∠BGH,∵∠BGH+∠CDG=90°,∠CDG=∠HDE,∴∠BEC+∠HDE=90°,∴GH⊥BE.故①正確;∵△EHG是直角三角形,O為EG的中點,∴OH=OG=OE,∴點H在正方形CGFE的外接圓上,∵EF=FG,∴∠FHG=∠EHF=∠EGF=45°,∠HEG=∠HFG,∴△EHM∽△GHF,故②正確;∵△BGH≌△EGH,∴BH=EH,又∵O是EG的中點,∴HO∥BG,∴△DHN∽△DGC,設EC和OH相交于點N.設HN=a,則BC=2a,設正方形ECGF的邊長是2b,則NC=b,CD=2a,即a2+2ab﹣b2=0,解得:a=b=(﹣1+)b,或a=(﹣1﹣)b(舍去),故③正確;∵△BGH≌△EGH,∴EG=BG,∵HO是△EBG的中位線,∴HO=BG,∴HO=EG,設正方形ECGF的邊長是2b,∴EG=2b,∴HO=b,∵OH∥BG,CG∥EF,∴OH∥EF,∴△MHO△MFE,∴,∴EM=OM,∴,∴∵EO=GO,∴S△HOE=S△HOG,∴故④錯誤,故選A.【點睛】本題考查了正方形的性質,以及全等三角形的判定與性質,相似三角形的判定與性質,正確求得兩個三角形的邊長的比是解決本題的關鍵.10、D【分析】根據相似三角形的判定與性質,得出,,從而建立等式關系,得出,然后再逐一分析四個選項,即可得出正確答案.【詳解】解:∵EF∥BC,若AE:EB=m,BD:DC=n,?∴△AEF∽△ABC,∴,∴,∴,∴∴當m=1,n=1,即當E為AB中點,D為BC中點時,,A.當m>1,n>1時,S△AEF與S△ABD同時增大,則或,即2或2>,故A錯誤;B.當m>1,n<1,S△AEF增大而S△ABD減小,則,即2,故B錯誤;C.m<1,n<1,S△AEF與S△ABD同時減小,則或,即2或2<,故C錯誤;D.m<1,n>1,S△AEF減小而S△ABD增大,則,即2<,故D正確.故選D.【點睛】本題主要考查了相似三角形的判定與性質,熟練掌握相似三角形的性質是解答本題的關鍵.二、填空題(每小題3分,共24分)11、【解析】拋物線y=?2x2平移,使頂點移到點P(3,-2)的位置,所得新拋物線的表達式為y=?2(x-3)2-2.故答案為y=?2(x-3)2-2.12、【解析】試題分析:∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°﹣∠ABC=60°,AB=4,BC=2,∵CA=CA1,∴△ACA1是等邊三角形,AA1=AC=BA1=2,∴∠BCB1=∠ACA1=60°,∵CB=CB1,∴△BCB1是等邊三角形,∴BB1=2,BA1=2,∠A1BB1=90°,∴BD=DB1=,∴A1D=考點:旋轉的性質.13、(1,2).【解析】試題分析:由二次函數的解析式可求得答案.∵y=(x﹣1)2+2,∴拋物線頂點坐標為(1,2).故答案為(1,2).考點:二次函數的性質.14、【分析】利用扇形的面積公式計算即可.【詳解】∵∠AOB=2∠ACB=70°,∴S扇形OAB==,故答案為.【點睛】本題主要考查扇形的面積公式,求出扇形的圓心角是解題的關鍵.15、1【解析】利用位似的性質得到AB:DE=OA:OD,然后把OA=1,OD=3,AB=2代入計算即可.【詳解】解:∵△ABC與△DEF位似,原點O是位似中心,∴AB:DE=OA:OD,即2:DE=1:3,∴DE=1.故答案是:1.【點睛】考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.16、【分析】先求出平移后的拋物線的頂點坐標,再利用頂點式拋物線解析式寫出即可.【詳解】拋物線的頂點坐標為(﹣1,﹣3),向左平移2個單位后的拋物線的頂點坐標為(﹣3,﹣3),所以,平移后的拋物線的解析式為.故答案為:.【點睛】本題考查了二次函數圖象與幾何變換,要求熟練掌握平移的規律:左加右減,上加下減.并用根據規律利用點的變化確定函數解析式.17、【分析】在三角形中由同底等高,同底倍高求出,根據平行線分線段成比例定理,求出,最后由三角形的面積的和差法求得.【詳解】連接DC,設平行線間的距離為h,AD=2a,如圖所示:∵,,∴S△DEF=S△DEA,又∵S△DEF=1,∴S△DEA=1,同理可得:,又∵S△ADC=S△ADE+S△DEC,∴,又∵平行線是一組等距的,AD=2a,∴,∴BD=3a,設C到AB的距離為k,∴ak,,∴,又∵S△ABC=S△ADC+S△BDC,∴.故答案為:.【點睛】本題綜合考查了平行線分線段成比例定理,平行線間的距離相等,三角形的面積求法等知識,重點掌握平行線分線段成比例定理,難點是作輔助線求三角形的面積.18、【解析】分析:根據概率的計算公式.顏色搭配總共有4種可能,分別列出搭配正確和搭配錯誤的可能,進而求出各自的概率即可.詳解:用A和a分別表示第一個有蓋茶杯的杯蓋和茶杯;用B和b分別表示第二個有蓋茶杯的杯蓋和茶杯、經過搭配所能產生的結果如下:Aa、Ab、Ba、Bb.所以顏色搭配正確的概率是.故答案為:.點睛:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.三、解答題(共66分)19、(1)a=6;(2);(3)1【解析】(1)把A的坐標代入直線解析式求a;(2)把求出的A點坐標代入反比例解析式中求k,從而得解析式;求B點坐標,結合A點坐標求面積.【詳解】解:(1)將A(﹣2,a)代入y=﹣x+4中,得:a=﹣(﹣2)+4,所以a=6(2)由(1)得:A(﹣2,6)將A(﹣2,6)代入中,得到:,即k=﹣1所以反比例函數的表達式為:(3)如圖:過A點作AD⊥x軸于D;∵A(﹣2,6)∴AD=6在直線y=﹣x+4中,令y=0,得x=4∴B(4,0),即OB=4∴△AOB的面積S=OB×AD=×4×6=1.考點:反比例函數綜合題.20、(1),;(2),.【分析】(1)先移項,再利用直接開平方法即可求出答案;(2)根據因式分解法即可求出答案.【詳解】(1)(x+1)2﹣9=0(x+1)2=9x+1=±3x1=2或x2=﹣1.(2)x2﹣1x﹣12=0(x﹣9)(x+2)=0x=9或x=﹣2.【點睛】本題考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接開平方法、公式法、因式分解法等,熟練掌握并靈活運用適當的方法是解題關鍵.21、3﹣.【分析】直接利用特殊角的三角函數值代入求出答案.【詳解】2cos60°+4sin60°?tan30°﹣cos45°=2×+4××﹣=1+2﹣=3﹣.【點睛】此題主要考查了特殊角的三角函數值,正確記憶相關數據是解題關鍵.22、(1)甲、乙商品的出廠單價分別是90、60元;(2)的值為15.【分析】(1)設甲、乙商品的出廠單價分別是、元,根據價格關系和總價相同建立方程組求解即可;(2)分別表示出實際購進數量和實際單價,利用單價×數量=總價,表示出甲乙的總價,再根據實際總貨款與原計劃相等建立方程求解.【詳解】解:(1)設甲、乙商品的出廠單價分別是、元,則,解得.答:甲、乙商品的出廠單價分別是90、60元.(2)由題意得:,解得:(舍去),.答:的值為15.【點睛】本題考查二元一次方程組和一元二次方程的應用,熟練掌握等量關系,建立方程是解題的關鍵.23、(1),;(2)75°.【分析】(1)用公式法即可求解;(2)根據特殊角的三角函數求解即可.【詳解】(1)∵,∴,∴,,(2)∵,∴,∴.【點睛】本題考查了利用公式法解一元二次方程和利用特殊角的三角函數值求角的度值,熟記特殊角的三角函數值是解題的關鍵.24、點C到海岸線l的距離約為81.96km.【分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國OPP標簽數據監測報告
- 2025年中國GPS一體機數據監測研究報告
- 2025年中國CNC高速單座模切機數據監測研究報告
- 2025年中國3.0mm束狀二芯光纜數據監測報告
- 2025至2030年中國食品級特丁基對苯二酚市場分析及競爭策略研究報告
- 2025至2030年中國藍寶石晶體市場分析及競爭策略研究報告
- 2025至2030年中國磁療床墊市場分析及競爭策略研究報告
- 2025至2030年中國電容式料位控制器市場分析及競爭策略研究報告
- 2025至2030年中國煙霧燃氣報警器市場分析及競爭策略研究報告
- 2025至2030年中國汽車頂隔音墊市場分析及競爭策略研究報告
- 學校電工聘用合同
- 2025年一年級下冊語文期末教學工作總結(2篇)
- 2024年司法考試完整真題及答案
- 2025年職業教育專業崗位技能資格知識考試題庫與答案
- 公安案件匯報
- 防洪防汛桌面演練
- 肌少癥獲獎課件
- 2024年執業藥師繼續教育專業答案
- 學校食堂食品原材料采購投標書
- DB13-T 3035-2023 建筑消防設施維護保養技術規范
- 汽車 4S 店防汛應急預案
評論
0/150
提交評論