




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.如圖,在中,,,,是線段上的兩個動點,且,過點,分別作,的垂線相交于點,垂足分別為,.有以下結論:①;②當點與點重合時,;③;④.其中正確的結論有()A.1個 B.2個 C.3個 D.4個2.某超市花費1140元購進蘋果100千克,銷售中有的正常損耗,為避免虧本(其它費用不考慮),售價至少定為多少元/千克?設售價為元/千克,根據題意所列不等式正確的是()A. B.C. D.3.如圖,在矩形ABCD中,AB=3,AD=4,若以點A為圓心,以4為半徑作⊙A,則下列各點中在⊙A外的是()A.點A B.點B C.點C D.點D4.若a,b是方程x2+2x-2016=0的兩根,則a2+3a+b=()A.2016 B.2015 C.2014 D.20125.如圖所示,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,則∠BOF為()A.35° B.30° C.25° D.20°6.在平面直角坐標系中,將二次函數y=3的圖象向左平移2個單位,所得圖象的解析式為()A.y=3?2 B.y=3+2 C.y=3 D.y=37.下列成語所描述的事件是必然事件的是()A.水漲船高 B.水中撈月 C.一箭雙雕 D.拔苗助長8.拋物線的頂點坐標是()A.(0,-1) B.(-1,1) C.(-1,0) D.(1,0)9.把函數的圖像繞原點旋轉得到新函數的圖像,則新函數的表達式是()A. B.C. D.10.觀察下列圖形,是中心對稱圖形的是()A. B. C. D.11.如圖,有一圓錐形糧堆,其側面展開圖是半徑為6m的半圓,糧堆母線AC的中點P處有一老鼠正在偷吃糧食,此時,小貓正在B處,它要沿圓錐側面到達P處捕捉老鼠,則小貓所經過的最短路程長為()A.3m B.m C.m D.4m12.若反比例函數y=的圖象經過點(2,﹣6),則k的值為()A.﹣12 B.12 C.﹣3 D.3二、填空題(每題4分,共24分)13.如圖,小華同學用自制的直角三角形紙板DEF測量樹的高度AB,他調整自己的位置,使斜邊DF與地面保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條直角邊,,測得邊DF離地面的高度,,則樹AB的高度為_______cm.14.如圖,C,D是拋物線y=(x+1)2﹣5上兩點,拋物線的頂點為E,CD∥x軸,四邊形ABCD為正方形,AB邊經過點E,則正方形ABCD的邊長為_____.15.如圖,在平面直角坐標系中,點A,B,C都在格點上,過A,B,C三點作一圓弧,則圓心的坐標是_____.16.若一元二次方程的兩根為,,則__________.17.如圖,在長方形ABCD中,AB=3cm,AD=9cm,將此長方形折疊,使點D與點B重合,折痕為EF,則ΔABE的面積為________cm218.如圖,在平面直角坐標系中,已知點,為平面內的動點,且滿足,為直線上的動點,則線段長的最小值為________.三、解答題(共78分)19.(8分)(問題情境)如圖1,四邊形ABCD是正方形,M是BC邊上的一點,E是CD邊的中點,AE平分∠DAM.(探究展示)(1)證明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,請給出證明;若不成立,請說明理由.(拓展延伸)(3)若四邊形ABCD是長與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結論是否成立?請分別作出判斷,不需要證明.20.(8分)如圖①是圖②是其側面示意圖(臺燈底座高度忽略不計),其中燈臂,燈罩,燈臂與底座構成的.可以繞點上下調節(jié)一定的角度.使用發(fā)現(xiàn):當與水平線所成的角為30°時,臺燈光線最佳.現(xiàn)測得點D到桌面的距離為.請通過計算說明此時臺燈光線是否為最佳?(參考數據:取1.73).21.(8分)如圖,在中,是高.矩形的頂點、分別在邊、上,在邊上,,,.求矩形的面積.22.(10分)如圖是一根鋼管的直觀圖,畫出它的三視圖.23.(10分)在平面直角坐標系中,一次函數(a≠0)的圖象與反比例函數的圖象交于第二、第四象限內的A、B兩點,與軸交于點C,過點A作AH⊥軸,垂足為點H,OH=3,tan∠AOH=,點B的坐標為(,-2).(1)求該反比例函數和一次函數的解析式;(2)求△AHO的周長.24.(10分)如圖,在平面直角坐標系中,已知矩形的頂點,過點的雙曲線與矩形的邊交于點.(1)求雙曲線的解析式以及點的坐標;.(2)若點是拋物線的頂點;①當雙曲線過點時,求頂點的坐標;②直接寫出當拋物線過點時,該拋物線與矩形公共點的個數以及此時的值.25.(12分)解一元二次方程:x2+4x﹣5=1.26.如圖,扇形OAB的半徑OA=4,圓心角∠AOB=90°,點C是弧AB上異于A、B的一點,過點C作CD⊥OA于點D,作CE⊥OB于點E,連結DE,過點C作弧AB所在圓的切線CG交OA的延長線于點G.(1)求證:∠CGO=∠CDE;(2)若∠CGD=60°,求圖中陰影部分的面積.
參考答案一、選擇題(每題4分,共48分)1、B【分析】利用勾股定理判定①正確;利用三角形中位線可判定②正確;③中利用相似三角形的性質;④中利用全等三角形以及勾股定理即可判定其錯誤.【詳解】∵,,∴,故①正確;∵當點與點重合時,CF⊥AB,F(xiàn)G⊥AC,∴FG為△ABC的中位線∴GC=MH=,故②正確;ABE不是三角形,故不可能,故③錯誤;∵AC=BC,∠ACB=90°∴∠A=∠5=45°將△ACF順時針旋轉90°至△BCD,則CF=CD,∠1=∠4,∠A=∠6=45°,BD=AF∵∠2=45°∴∠1+∠3=∠3+∠4=45°∴∠DCE=∠2在△ECF和△ECD中,CF=CD,∠DCE=∠2,CE=CE∴△ECF≌△ECD(SAS)∴EF=DE∵∠5=45°∴∠BDE=90°∴,即故④錯誤;故選:B.【點睛】此題主要考查等腰直角三角形、三角形中位線以及全等三角形的性質、勾股定理的運用,熟練掌握,即可解題.2、A【分析】根據“為避免虧本”可知,總售價≥總成本,列出不等式即可.【詳解】解:由題意可知:故選:A.【點睛】此題考查的是一元一次不等式的應用,掌握實際問題中的不等關系是解決此題的關鍵.3、C【解析】試題分析:根據勾股定理求出AC的長,進而得出點B,C,D與⊙A的位置關系.解:連接AC,∵AB=3cm,AD=4cm,∴AC=5cm,∵AB=3<4,AD=4=4,AC=5>4,∴點B在⊙A內,點D在⊙A上,點C在⊙A外.故選C.考點:點與圓的位置關系.4、C【分析】先根據一元二次方程的解的定義得到a2+2a-2016=0,即a2+2a=2016,則a2+3a+b化簡為2016+a+b,再根據根與系數的關系得到a+b=-2,然后利用整體代入的方法計算即可.【詳解】∵a是方程x2+2x-2016=0的實數根,
∴a2+2a-2016=0,
∴a2=-2a+2016,
∴a2+3a+b=-2a+2016+3a+b=a+b+2016,
∵a、b是方程x2+2x-2016=0的兩個實數根,
∴a+b=-2,
∴a2+3a+b=-2+2016=1.
故選:C.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數的關系:若方程兩個為x1,x2,則x1+x2=-,x1?x2=.也考查了一元二次方程的解.5、C【解析】試題分析:CD∥AB,∠D=50°則∠BOD=50°.則∠DOA=180°-50°=130°.則OE平分∠AOD,∠EOD=65°.∵OF⊥OE,所以∠BOF=90°-65°=25°.選C.考點:平行線性質點評:本題難度較低,主要考查學生對平行線性質及角平分線性質的掌握.6、D【分析】先確定拋物線y=3x1的頂點坐標為(0,0),再根據點平移的規(guī)律得到點(0,0)向左平移1個單位所得對應點的坐標為(-1,0),然后利用頂點式寫出新拋物線解析式即可.【詳解】解:拋物線y=3x1的頂點坐標為(0,0),把點(0,0)向左平移1個單位所得對應點的坐標為(-1,0),∴平移后的拋物線解析式為:y=3(x+1)1.故選:D.【點睛】本題考查了二次函數圖象與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通常可利用兩種方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式.7、A【解析】必然事件就是一定會發(fā)生的事件,依據定義即可解決【詳解】A.水漲船高是必然事件,故正確;B.水中撈月,是不可能事件,故錯誤;C.一箭雙雕是隨機事件,故錯誤D.拔苗助長是不可能事件,故錯誤故選:A【點睛】此題考查隨機事件,難度不大8、C【解析】用配方法將拋物線的一般式轉化為頂點式,可確定頂點坐標.解答:解:∵y=x2+2x+1=(x+1)2,∴拋物線頂點坐標為(-1,0),故選C.9、D【分析】二次函數繞原點旋轉,旋轉后的拋物線頂點與原拋物線頂點關于原點中心對稱,開口方向相反,將原解析式化為頂點式即可解答.【詳解】把函數的圖像繞原點旋轉得到新函數的圖像,則新函數的表達式:故選:D【點睛】本題考查的是二次函數的旋轉,關鍵是掌握旋轉的規(guī)律,二次函數的旋轉,平移等一般都要先化為頂點式.10、C【分析】根據中心對稱圖形的概念判斷即可.【詳解】解:A、不是中心對稱圖形,故此選項不符合題意;B、不是中心對稱圖形,故此選項不符合題意;C、是中心對稱圖形,故此選項符合題意;D、不是中心對稱圖形,故此選項不符合題意.故選:C.【點睛】本題考查了中心對稱圖形的識別,熟練掌握概念是解題的關鍵.11、C【詳解】如圖,由題意得:AP=3,AB=6,∴在圓錐側面展開圖中故小貓經過的最短距離是故選C.12、A【解析】試題分析:∵反比例函數的圖象經過點(2,﹣6),∴,解得k=﹣1.故選A.考點:反比例函數圖象上點的坐標特征.二、填空題(每題4分,共24分)13、420【分析】先判定△DEF和△DBC相似,然后根據相似三角形對應邊成比例列式求出BC的長,再加上AC即可得解.【詳解】解:在△DEF和△DBC中,∠D=∠D,∠DEF=∠DCB,∴△DEF∽△DCB,∴,解得BC=300cm,∵,∴AB=AC+BC=120+300=420m,即樹高420m.故答案為:420.【點睛】本題考查了相似三角形的應用,主要利用了相似三角形對應邊成比例的性質,比較簡單,判定出△DEF和△DBC相似是解題的關鍵.14、【分析】首先設AB=CD=AD=BC=a,再根據拋物線解析式可得E點坐標,表示出C點橫坐標和縱坐標,進而可得方程﹣5﹣a=﹣5,再解即可.【詳解】設AB=CD=AD=BC=a,∵拋物線y=(x+1)2﹣5,∴頂點E(﹣1,﹣5),對稱軸為直線x=﹣1,∴C的橫坐標為﹣1,D的橫坐標為﹣1﹣,∵點C在拋物線y=(x+1)2﹣5上,∴C點縱坐標為(﹣1+1)2﹣5=﹣5,∵E點坐標為(﹣1,﹣5),∴B點縱坐標為﹣5,∵BC=a,∴﹣5﹣a=﹣5,解得:a1=,a2=0(不合題意,舍去),故答案為:.【點睛】此題主要考查二次函數與幾何綜合,解題的關鍵是熟知二次函數的圖像與性質、正方形的性質.15、(2,1)【分析】根據垂徑定理的推論:弦的垂直平分線必過圓心,可以作弦AB和BC的垂直平分線,交點即為圓心.【詳解】根據垂徑定理的推論:弦的垂直平分線必過圓心,可以作弦AB和BC的垂直平分線,交點即為圓心.如圖所示,則圓心是(2,1).故答案為:(2,1).【點睛】本題考查垂徑定理的應用,解答此題的關鍵是熟知垂徑定理,即“垂直于弦的直徑平分弦”.16、4【分析】利用韋達定理計算即可得出答案.【詳解】根據題意可得:故答案為4.【點睛】本題考查的是一元二次方程根與系數的關系,若和是方程的兩個解,則.17、6【解析】由折疊的性質可知AE與BE間的關系,根據勾股定理求出AE長可得面積.【詳解】解:由題意可知BE=ED.因為AD=AE+DE=AE+BE=9cm,所以BE=9-AEcm.在RtΔABE中,根據勾股定理可知,AB2+AE2=BE2,所以32+A故答案為:6【點睛】本題考查了勾股定理,由折疊性質得出直角邊與斜邊的關系是解題的關鍵.18、【分析】由直徑所對的圓周角為直角可知,動點軌跡為以中點為圓心,長為直徑的圓,求得圓心到直線的距離,即可求得答案.【詳解】∵,∴動點軌跡為:以中點為圓心,長為直徑的圓,∵,,∴點M的坐標為:,半徑為1,過點M作直線垂線,垂足為D,交⊙D于C點,如圖:此時取得最小值,∵直線的解析式為:,∴,∴,∵,∴,∴最小值為,故答案為:.【點睛】本題考查了點的軌跡,圓周角定理,圓心到直線的距離,正確理解點到直線的距離垂線段最短是正確解答本題的關鍵.三、解答題(共78分)19、(1)證明見解析;(2)AM=DE+BM成立,證明見解析;(3)①結論AM=AD+MC仍然成立;②結論AM=DE+BM不成立.【分析】(1)從平行線和中點這兩個條件出發(fā),延長AE、BC交于點N,易證△ADE≌△NCE,得到AD=CN,再證明AM=NM即可;(2)過點A作AF⊥AE,交CB的延長線于點F,易證△ABF≌△ADE,從而證明AM=FM,即可得證;(3)AM=DE+BM需要四邊形ABCD是正方形,故不成立,AM=AD+MC仍然成立.【詳解】(1)延長AE、BC交于點N,如圖1(1),∵四邊形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.在△ADE和△NCE中,∴△ADE≌△NCE(AAS).∴AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.證明:過點A作AF⊥AE,交CB的延長線于點F,如圖1(2)所示.∵四邊形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠FAE=90°.∴∠FAB=90°﹣∠BAE=∠DAE.在△ABF和△ADE中,∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM.(3)①結論AM=AD+MC仍然成立.②結論AM=DE+BM不成立.【點睛】此題主要考查正方形的性質與全等三角形的判定與性質,解題的關鍵是熟知全等三角形的判斷與性質.20、此時臺燈光線是最佳【解析】如圖,作于,于,于.解直角三角形求出即可判斷.【詳解】解:如圖,作于,于,于.∵,∴四邊形是矩形,∴,在中,∵,∴,∴∵,∴,在中,,∴,∴此時臺燈光線為最佳.【點睛】本題考查解直角三角形的應用,解題的關鍵是學會添加常用輔助線面構造直角三角形解決問題,屬于中考常考題型.21、【分析】根據相似三角形對應邊比例相等性質求出EF,EH的長,繼而求出面積.【詳解】解:如圖:∵四邊形是矩形,AD交EH于點Q,∴∴∴設,則∴解得:.所以,.∴【點睛】本題考查的知識點主要是相似三角形的性質,利用相似三角形對應邊比例相等求出有關線段的長是解題的關鍵.22、答案見解析【解析】試題分析:根據三視圖的畫法得出答案.試題解析:如圖考點:三視圖23、(1)一次函數為,反比例函數為;(2)△AHO的周長為12【解析】分析:(1)根據正切函數可得AH=4,根據反比例函數的特點k=xy為定值,列出方程,求出k的值,便可求出反比例函數的解析式;根據k的值求出B兩點的坐標,用待定系數法便可求出一次函數的解析式.(2)由(1)知AH的長,根據勾股定理,可得AO的長,根據三角形的周長,可得答案.詳解:(1)∵tan∠AOH==∴AH=OH=4∴A(-4,3),代入,得k=-4×3=-12∴反比例函數為∴∴m=6∴B(6,-2)∴∴=,b=1∴一次函數為(2)△AHO的周長為:3+4+5=12點睛:此題考查的是反比例函數圖象上點的坐標特點及用待定系數法求一次函數及反比例函數的解析式.24、(1),;(2)①;②三個,【分析】(1)將C點坐標代入求得k的值即可求得反比例函數解析式,將代入所求解析式求得x的值即可求得E點坐標;(2)①將拋物線化為頂點式,可求得P點的橫坐標,再根據雙曲線解析式即可求得P點坐標;②根據B點為函數與y軸的交點可求得t的值和函數解析式,再根據函數的對稱軸,與x軸的交點坐標即可求得拋物線與矩形公共點的個數.【詳解】解:(1)把點代入,得,∴把代入,得,∴;(2)①∵拋物線∴頂點的橫坐標,∵頂點在雙曲線上,∴,∴頂點,②當拋物線過點時,,解得,拋物線解析式為,故函數的頂點坐標為,對稱軸為,與x軸的交點坐標分別為所以它與矩形在線段BD上相交于和,在線段AB上相交于,即它與矩形有三個公共點,此時.【點睛】本題考查待定系數法
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 和物業(yè)有效溝通
- 結構設計管理流程
- 4S店安全生產培訓工作總結
- 廢物回收面試題及答案
- 幼兒園小班三八節(jié)活動教案
- 未來潛力測試題及答案
- 電視攝影考試題及答案
- 內容規(guī)范測試題及答案
- 消化道息肉切除術后護理
- 憲法論述試題及答案
- 欄桿安裝單元工程施工質量驗收評定表完整
- 光污染以及其控制
- T∕CSUS 04-2020 裝配式磷石膏隔墻體技術標準-(高清版)
- (全新)政府專職消防員考試題庫(完整版)
- 2022年廣東省公務員考試申論真題及參考答案
- 美國治理豬藍耳病的經驗PRRS控制與清除策略ppt課件
- 建設項目工程總承包合同 GF—2020—0216
- 微波技術與天線 第5章
- 衛(wèi)生監(jiān)督協(xié)管試題庫
- 鋼灰?guī)熹撝苹規(guī)旒夹g協(xié)議
- 變速箱廠總平面布置設計課程設計說明書
評論
0/150
提交評論