2022年湖北省宜昌市夷陵區重點達標名校中考猜題數學試卷含解析_第1頁
2022年湖北省宜昌市夷陵區重點達標名校中考猜題數學試卷含解析_第2頁
2022年湖北省宜昌市夷陵區重點達標名校中考猜題數學試卷含解析_第3頁
2022年湖北省宜昌市夷陵區重點達標名校中考猜題數學試卷含解析_第4頁
2022年湖北省宜昌市夷陵區重點達標名校中考猜題數學試卷含解析_第5頁
免費預覽已結束,剩余19頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖所示的四邊形,與選項中的一個四邊形相似,這個四邊形是()A. B. C. D.2.如圖,AD,CE分別是△ABC的中線和角平分線.若AB=AC,∠CAD=20°,則∠ACE的度數是()A.20° B.35° C.40° D.70°3.如圖所示,在矩形ABCD中,AB=6,BC=8,對角線AC、BD相交于點O,過點O作OE垂直AC交AD于點E,則DE的長是()A.5 B. C. D.4.如圖①是半徑為2的半圓,點C是弧AB的中點,現將半圓如圖②方式翻折,使得點C與圓心O重合,則圖中陰影部分的面積是()A. B.﹣ C.2+ D.2﹣5.下列四張印有汽車品牌標志圖案的卡片中,是中心對稱圖形的卡片是()A. B. C. D.6.二次函數y=﹣(x﹣1)2+5,當m≤x≤n且mn<0時,y的最小值為2m,最大值為2n,則m+n的值為()A. B.2 C. D.7.為考察兩名實習工人的工作情況,質檢部將他們工作第一周每天生產合格產品的個數整理成甲,乙兩組數據,如下表:甲26778乙23488關于以上數據,說法正確的是()A.甲、乙的眾數相同 B.甲、乙的中位數相同C.甲的平均數小于乙的平均數 D.甲的方差小于乙的方差8.有理數a,b在數軸上的對應點如圖所示,則下面式子中正確的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①② B.①④ C.②③ D.③④9.下列各數中負數是()A.﹣(﹣2)B.﹣|﹣2|C.(﹣2)2D.﹣(﹣2)310.由一些大小相同的小正方形搭成的幾何體的左視圖和俯視圖,如圖所示,則搭成該幾何體的小正方形的個數最少是()A.4 B.5 C.6 D.711.如圖,AB與⊙O相切于點A,BO與⊙O相交于點C,點D是優弧AC上一點,∠CDA=27°,則∠B的大小是()A.27° B.34° C.36° D.54°12.如圖,在△ABC中,∠B=90°,AB=3cm,BC=6cm,動點P從點A開始沿AB向點B以1cm/s的速度移動,動點Q從點B開始沿BC向點C以2cm/s的速度移動,若P,Q兩點分別從A,B兩點同時出發,P點到達B點運動停止,則△PBQ的面積S隨出發時間t的函數關系圖象大致是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.解不等式組請結合題意填空,完成本題的解答.(1)解不等式①,得________;(2)解不等式②,得________;(3)把不等式①和②的解集在數軸上表示出來;(4)原不等式組的解集為___________.14.如圖,點M、N分別在∠AOB的邊OA、OB上,將∠AOB沿直線MN翻折,設點O落在點P處,如果當OM=4,ON=3時,點O、P的距離為4,那么折痕MN的長為______.15.圖1是我國古代建筑中的一種窗格,其中冰裂紋圖案象征著堅冰出現裂紋并開始消溶,形狀無一定規則,代表一種自然和諧美.圖2是從圖1冰裂紋窗格圖案中提取的由五條線段組成的圖形,則∠1+∠2+∠3+∠4+∠5=度.16.如圖,O是矩形ABCD的對角線AC的中點,M是AD的中點,若AB=5,AD=12,則四邊形ABOM的周長為.17.如圖,在正方形ABCD中,O是對角線AC、BD的交點,過O點作OE⊥OF,OE、OF分別交AB、BC于點E、點F,AE=3,FC=2,則EF的長為_____.18.拋物線y=2x2+3x+k﹣2經過點(﹣1,0),那么k=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,點A.F、C.D在同一直線上,點B和點E分別在直線AD的兩側,且AB=DE,∠A=∠D,AF=DC.(1)求證:四邊形BCEF是平行四邊形,(2)若∠ABC=90°,AB=4,BC=3,當AF為何值時,四邊形BCEF是菱形.20.(6分)如圖,在平面直角坐標系xOy中,一次函數y=kx+b(k≠0)的圖象與反比例函數y=(n≠0)的圖象交于第二、四象限內的A、B兩點,與x軸交于點C,點B坐標為(m,﹣1),AD⊥x軸,且AD=3,tan∠AOD=.求該反比例函數和一次函數的解析式;求△AOB的面積;點E是x軸上一點,且△AOE是等腰三角形,請直接寫出所有符合條件的E點的坐標.21.(6分)如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C、D兩點.點P是x軸上的一個動點.求此拋物線的解析式;求C、D兩點坐標及△BCD的面積;若點P在x軸上方的拋物線上,滿足S△PCD=S△BCD,求點P的坐標.22.(8分)一位運動員推鉛球,鉛球運行時離地面的高度(米)是關于運行時間(秒)的二次函數.已知鉛球剛出手時離地面的高度為米;鉛球出手后,經過4秒到達離地面3米的高度,經過10秒落到地面.如圖建立平面直角坐標系.(Ⅰ)為了求這個二次函數的解析式,需要該二次函數圖象上三個點的坐標.根據題意可知,該二次函數圖象上三個點的坐標分別是____________________________;(Ⅱ)求這個二次函數的解析式和自變量的取值范圍.23.(8分)已知是上一點,.如圖①,過點作的切線,與的延長線交于點,求的大小及的長;如圖②,為上一點,延長線與交于點,若,求的大小及的長.24.(10分)如圖,反比例y=的圖象與一次函數y=kx﹣3的圖象在第一象限內交于A(4,a).(1)求一次函數的解析式;(2)若直線x=n(0<n<4)與反比例函數和一次函數的圖象分別交于點B,C,連接AB,若△ABC是等腰直角三角形,求n的值.25.(10分)如圖所示,在正方形ABCD中,E,F分別是邊AD,CD上的點,AE=ED,DF=DC,連結EF并延長交BC的延長線于點G,連結BE.求證:△ABE∽△DEF.若正方形的邊長為4,求BG的長.26.(12分)解不等式組:,并把解集在數軸上表示出來.27.(12分)先化簡,然后從-2≤x≤2的范圍內選取一個合適的整數作為x的值代入求值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

根據勾股定理求出四邊形第四條邊的長度,進而求出四邊形四條邊之比,根據相似多邊形的性質判斷即可.【詳解】解:作AE⊥BC于E,則四邊形AECD為矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB==5,∴四邊形ABCD的四條邊之比為1:3:5:5,D選項中,四條邊之比為1:3:5:5,且對應角相等,故選D.【點睛】本題考查的是相似多邊形的判定和性質,掌握相似多邊形的對應邊的比相等是解題的關鍵.2、B【解析】

先根據等腰三角形的性質以及三角形內角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分線定義即可得出∠ACE=∠ACB=35°.【詳解】∵AD是△ABC的中線,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分線,∴∠ACE=∠ACB=35°.故選B.【點睛】本題考查了等腰三角形的兩個底角相等的性質,等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合的性質,三角形內角和定理以及角平分線定義,求出∠ACB=70°是解題的關鍵.3、C【解析】

先利用勾股定理求出AC的長,然后證明△AEO∽△ACD,根據相似三角形對應邊成比例列式求解即可.【詳解】∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE=,∴DE=8﹣=,故選:C.【點睛】本題考查了矩形的性質,勾股定理,相似三角形對應邊成比例的性質,根據相似三角形對應邊成比例列出比例式是解題的關鍵.4、D【解析】

連接OC交MN于點P,連接OM、ON,根據折疊的性質得到OP=OM,得到∠POM=60°,根據勾股定理求出MN,結合圖形計算即可.【詳解】解:連接OC交MN于點P,連接OM、ON,由題意知,OC⊥MN,且OP=PC=1,在Rt△MOP中,∵OM=2,OP=1,∴cos∠POM==,AC==,∴∠POM=60°,MN=2MP=2,∴∠AOB=2∠AOC=120°,則圖中陰影部分的面積=S半圓-2S弓形MCN=×π×22-2×(-×2×1)=2-π,故選D.【點睛】本題考查了軸對稱的性質的運用、勾股定理的運用、三角函數值的運用、扇形的面積公式的運用、三角形的面積公式的運用,解答時運用軸對稱的性質求解是關鍵.5、C【解析】試題分析:由中心對稱圖形的概念可知,這四個圖形中只有第三個是中心對稱圖形,故答案選C.考點:中心對稱圖形的概念.6、D【解析】

由m≤x≤n和mn<0知m<0,n>0,據此得最小值為1m為負數,最大值為1n為正數.將最大值為1n分兩種情況,①頂點縱坐標取到最大值,結合圖象最小值只能由x=m時求出.②頂點縱坐標取不到最大值,結合圖象最大值只能由x=n求出,最小值只能由x=m求出.【詳解】解:二次函數y=﹣(x﹣1)1+5的大致圖象如下:.①當m≤0≤x≤n<1時,當x=m時y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當x=n時y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合題意,舍去);②當m≤0≤x≤1≤n時,當x=m時y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當x=1時y取最大值,即1n=﹣(1﹣1)1+5,解得:n=,或x=n時y取最小值,x=1時y取最大值,

1m=-(n-1)1+5,n=,∴m=,

∵m<0,

∴此種情形不合題意,所以m+n=﹣1+=.7、D【解析】

分別根據眾數、中位數、平均數、方差的定義進行求解后進行判斷即可得.【詳解】甲:數據7出現了2次,次數最多,所以眾數為7,排序后最中間的數是7,所以中位數是7,,=4.4,乙:數據8出現了2次,次數最多,所以眾數為8,排序后最中間的數是4,所以中位數是4,,=6.4,所以只有D選項正確,故選D.【點睛】本題考查了眾數、中位數、平均數、方差,熟練掌握相關定義及求解方法是解題的關鍵.8、B【解析】分析:本題是考察數軸上的點的大小的關系.解析:由圖知,b<0<a,故①正確,因為b點到原點的距離遠,所以|b|>|a|,故②錯誤,因為b<0<a,所以ab<0,故③錯誤,由①知a-b>a+b,所以④正確.故選B.9、B【解析】

首先利用相反數,絕對值的意義,乘方計算方法計算化簡,進一步利用負數的意義判定即可.【詳解】A、-(-2)=2,是正數;B、-|-2|=-2,是負數;C、(-2)2=4,是正數;D、-(-2)3=8,是正數.故選B.【點睛】此題考查負數的意義,利用相反數,絕對值的意義,乘方計算方法計算化簡是解決問題的關鍵.10、C【解析】試題分析:由題中所給出的左視圖知物體共兩層,每一層都是兩個小正方體;從俯視圖可以可以看出最底層的個數所以圖中的小正方體最少2+4=1.故選C.11、C【解析】

由切線的性質可知∠OAB=90°,由圓周角定理可知∠BOA=54°,根據直角三角形兩銳角互余可知∠B=36°.【詳解】解:∵AB與⊙O相切于點A,

∴OA⊥BA.

∴∠OAB=90°.

∵∠CDA=27°,

∴∠BOA=54°.

∴∠B=90°-54°=36°.故選C.考點:切線的性質.12、C【解析】

根據題意表示出△PBQ的面積S與t的關系式,進而得出答案.【詳解】由題意可得:PB=3﹣t,BQ=2t,則△PBQ的面積S=PB?BQ=(3﹣t)×2t=﹣t2+3t,故△PBQ的面積S隨出發時間t的函數關系圖象大致是二次函數圖象,開口向下.故選C.【點睛】此題主要考查了動點問題的函數圖象,正確得出函數關系式是解題關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(1)x<1;(2)x≥﹣2;(1)見解析;(4)﹣2≤x<1;【解析】

(1)先移項,再合并同類項,求出不等式1的解集即可;(2)先去分母、移項,再合并同類項,求出不等式2的解集即可;(1)把兩不等式的解集在數軸上表示出來即可;(4)根據數軸上不等式的解集,求出其公共部分即可.【詳解】(1)解不等式①,得:x<1;(2)解不等式②,得:x≥﹣2;(1)把不等式①和②的解集在數軸上表示出來如下:(4)原不等式組的解集為:﹣2≤x<1,故答案為:x<1、x≥﹣2、﹣2≤x<1.【點睛】本題主要考查一元一次不等式組的解法及在數軸上的表示。14、【解析】

由折疊的性質可得MN⊥OP,EO=EP=2,由勾股定理可求ME,NE的長,即可求MN的長.【詳解】設MN與OP交于點E,

∵點O、P的距離為4,

∴OP=4

∵折疊

∴MN⊥OP,EO=EP=2,

在Rt△OME中,ME=在Rt△ONE中,NE=∴MN=ME-NE=2-故答案為2-【點睛】本題考查了翻折變換,勾股定理,利用勾股定理求線段的長度是本題的關鍵.15、360°.【解析】

根據多邊形的外角和等于360°解答即可.【詳解】由多邊形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案為360°.【點睛】本題考查的是多邊形的內角和外角,掌握多邊形的外角和等于360°是解題的關鍵.16、1.【解析】

∵AB=5,AD=12,∴根據矩形的性質和勾股定理,得AC=13.∵BO為Rt△ABC斜邊上的中線∴BO=6.5∵O是AC的中點,M是AD的中點,∴OM是△ACD的中位線∴OM=2.5∴四邊形ABOM的周長為:6.5+2.5+6+5=1故答案為117、【解析】

由△BOF≌△AOE,得到BE=FC=2,在直角△BEF中,從而求得EF的值.【詳解】∵正方形ABCD中,OB=OC,∠BOC=∠EOF=90°,∴∠EOB=∠FOC,在△BOE和△COF中,,∴△BOE≌△COF(ASA)∴BE=FC=2,同理BF=AE=3,在Rt△BEF中,BF=3,BE=2,∴EF==.故答案為【點睛】本題考查了正方形的性質、三角形全等的性質和判定、勾股定理,在四邊形中常利用三角形全等的性質和勾股定理計算線段的長.18、3.【解析】試題解析:把(-1,0)代入得:2-3+k-2=0,解得:k=3.故答案為3.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析(2)當AF=時,四邊形BCEF是菱形.【解析】

(1)由AB=DE,∠A=∠D,AF=DC,根據SAS得△ABC≌DEF,即可得BC=EF,且BC∥EF,即可判定四邊形BCEF是平行四邊形.(2)由四邊形BCEF是平行四邊形,可得當BE⊥CF時,四邊形BCEF是菱形,所以連接BE,交CF與點G,證得△ABC∽△BGC,由相似三角形的對應邊成比例,即可求得AF的值.【詳解】(1)證明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.∵在△ABC和△DEF中,AC=DF,∠A=∠D,AB=DE,∴△ABC≌DEF(SAS).∴BC=EF,∠ACB=∠DFE,∴BC∥EF.∴四邊形BCEF是平行四邊形.(2)解:連接BE,交CF與點G,∵四邊形BCEF是平行四邊形,∴當BE⊥CF時,四邊形BCEF是菱形.∵∠ABC=90°,AB=4,BC=3,∴AC=.∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC.∴,即.∴.∵FG=CG,∴FC=2CG=,∴AF=AC﹣FC=5﹣.∴當AF=時,四邊形BCEF是菱形.20、(1)y=﹣,y=﹣x+2;(2)6;(3)當點E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)時,△AOE是等腰三角形.【解析】

(1)利用待定系數法,即可得到反比例函數和一次函數的解析式;(2)利用一次函數解析式求得C(4,0),即OC=4,即可得出△AOB的面積=×4×3=6;(3)分類討論:當AO為等腰三角形腰與底時,求出點E坐標即可.【詳解】(1)如圖,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=,考點:n=3×(﹣2)=﹣6,所以反比例函數解析式為:y=﹣,把B(m,﹣1)代入y=﹣,得:m=6,把A(﹣2,3),B(6,﹣1)分別代入y=kx+b,得:,解得:,所以一次函數解析式為:y=﹣x+2;(2)當y=0時,﹣x+2=0,解得:x=4,則C(4,0),所以;(3)當OE3=OE2=AO=,即E2(﹣,0),E3(,0);當OA=AE1=時,得到OE1=2OD=4,即E1(﹣4,0);當AE4=OE4時,由A(﹣2,3),O(0,0),得到直線AO解析式為y=﹣x,中點坐標為(﹣1,1.5),令y=0,得到y=﹣,即E4(﹣,0),綜上,當點E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)時,△AOE是等腰三角形.【點睛】本題考查了反比例函數與一次函數的交點問題,熟練掌握各自的性質是解題的關鍵.21、(1)y=﹣(x﹣1)2+4;(2)C(﹣1,0),D(3,0);6;(3)P(1+,),或P(1﹣,)【解析】

(1)設拋物線頂點式解析式y=a(x-1)2+4,然后把點B的坐標代入求出a的值,即可得解;

(2)令y=0,解方程得出點C,D坐標,再用三角形面積公式即可得出結論;

(3)先根據面積關系求出點P的坐標,求出點P的縱坐標,代入拋物線解析式即可求出點P的坐標.【詳解】解:(1)、∵拋物線的頂點為A(1,4),∴設拋物線的解析式y=a(x﹣1)2+4,把點B(0,3)代入得,a+4=3,解得a=﹣1,∴拋物線的解析式為y=﹣(x﹣1)2+4;(2)由(1)知,拋物線的解析式為y=﹣(x﹣1)2+4;令y=0,則0=﹣(x﹣1)2+4,∴x=﹣1或x=3,∴C(﹣1,0),D(3,0);∴CD=4,∴S△BCD=CD×|yB|=×4×3=6;(3)由(2)知,S△BCD=CD×|yB|=×4×3=6;CD=4,∵S△PCD=S△BCD,∴S△PCD=CD×|yP|=×4×|yP|=3,∴|yP|=,∵點P在x軸上方的拋物線上,∴yP>0,∴yP=,∵拋物線的解析式為y=﹣(x﹣1)2+4;∴=﹣(x﹣1)2+4,∴x=1±,∴P(1+,),或P(1﹣,).【點睛】本題考查的是二次函數的綜合應用,熟練掌握二次函數的性質是解題的關鍵.22、(0,),(4,3)【解析】試題分析:(Ⅰ)根據“剛出手時離地面高度為米、經過4秒到達離地面3米的高度和經過1秒落到地面”可得三點坐標;(Ⅱ)利用待定系數法求解可得.試題解析:解:(Ⅰ)由題意知,該二次函數圖象上的三個點的坐標分別是(0,)、(4,3)、(1,0).故答案為:(0,)、(4,3)、(1,0).(Ⅱ)設這個二次函數的解析式為y=ax2+bx+c,將(Ⅰ)三點坐標代入,得:,解得:,所以所求拋物線解析式為y=﹣x2+x+,因為鉛球從運動員拋出到落地所經過的時間為1秒,所以自變量的取值范圍為0≤x≤1.23、(Ⅰ),PA=4;(Ⅱ),【解析】

(Ⅰ)易得△OAC是等邊三角形即∠AOC=60°,又由PC是○O的切線故PC⊥OC,即∠OCP=90°可得∠P的度數,由OC=4可得PA的長度(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,易得∠APC=45°;過點C作CD⊥AB于點D,易得AD=AO=CO,在Rt△DOC中易得CD的長,即可求解【詳解】解:(Ⅰ)∵AB是○O的直徑,∴OA是○O的半徑.∵∠OAC=60°,OA=OC,∴△OAC是等邊三角形.∴∠AOC=60°.∵PC是○O的切線,OC為○O的半徑,∴PC⊥OC,即∠OCP=90°∴∠P=30°.∴PO=2CO=8.∴PA=PO-AO=PO-CO=4.(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,∴∠AOC=∠ACO=∠OAC=60°∴∠AQC=30°.∵AQ=CQ,∴∠ACQ=∠QAC=75°∴∠ACQ-∠ACO=∠QAC-∠OAC=15°即∠QCO=∠QAO=15°.∴∠APC=∠AQC+∠QAO=45°.如圖②,過點C作CD⊥AB于點D.∵△OAC是等邊三角形,CD⊥AB于點D,∴∠DCO=30°,AD=AO=CO=2.∵∠APC=45°,∴∠DCQ=∠APC=45°∴PD=CD在Rt△DOC中,OC=4,∠DCO=30°,∴OD=2,∴CD=2∴PD=CD=2∴AP=AD+DP=2+2【點睛】此題主要考查圓的綜合應用24、(1)y=x﹣3(2)1【解析】

(1)由已知先求出a,得出點A的坐標,再把A的坐標代入一次函數y=kx-3求出k的值即可求出一次函數的解析式;(2)易求點B、C的坐標分別為(n,),(n,n-3).設直線y=x-3與x軸、y軸分別交于點D、E,易得OD=OE=3,那么∠OED=45°.根據平行線的性質得到∠BCA=∠OED=45°,所以當△ABC是等腰直角三角形時只有AB=AC一種情況.過點A作AF⊥BC于F,根據等腰三角形三線合一的性質得出BF=FC,依此得出方程-1=1-(n-3),解方程即可.【詳解】解:(1)∵反比例y=的圖象過點A(4,a),∴a==1,∴A(4,1),把A(4,1)代入一次函數y=kx﹣3,得4k﹣3=1,∴k=1,∴一次函數的解析式為y=x﹣3;(2)由題意可知,點B、C的坐標分別為(n,),(n,n﹣3).設直線y=x﹣3與x軸、y軸分別交于點D、E,如圖,當x=0時,y=﹣3;當y=0時,x=3,∴OD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論