




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.在平面直角坐標系中,將點P(﹣4,2)繞原點O順時針旋轉90°,則其對應點Q的坐標為()A.(2,4) B.(2,﹣4) C.(﹣2,4) D.(﹣2,﹣4)2.如圖,△ABC中,∠C=90°,D、E是AB、BC上兩點,將△ABC沿DE折疊,使點B落在AC邊上點F處,并且DF∥BC,若CF=3,BC=9,則AB的長是()A. B.15 C. D.93.據史料記載,雎水太平橋建于清嘉慶年間,已有200余年歷史.橋身為一巨型單孔圓弧,既沒有用鋼筋,也沒有用水泥,全部由石塊砌成,猶如一道彩虹橫臥河面上,橋拱半徑OC為13m,河面寬AB為24m,則橋高CD為()A.15m B.17m C.18m D.20m4.一個正多邊形的內角和為900°,那么從一點引對角線的條數是()A.3 B.4 C.5 D.65.一個容量為50的樣本,在整理頻率分布時,將所有頻率相加,其和是()A.50B.0.02C.0.1D.16.如圖,在△ABC中,AB=AC=5,BC=8,D是線段BC上的動點(不含端點B,C).若線段AD長為正整數,則點D的個數共有()A.5個 B.4個 C.3個 D.2個7.若2m﹣n=6,則代數式m-n+1的值為()A.1 B.2 C.3 D.48.如圖,矩形ABCD中,AB=3,AD=,將矩形ABCD繞點B按順時針方向旋轉后得到矩形EBGF,此時恰好四邊形AEHB為菱形,連接CH交FG于點M,則HM=()A. B.1 C. D.9.下列計算正確的是(
).A.(x+y)2=x2+y2 B.(-xy2)3=-x3y6C.x6÷x3=x2 D.=210.2017年,太原市GDP突破三千億元大關,達到3382億元,經濟總量比上年增長了426.58億元,達到近三年來增量的最高水平,數據“3382億元”用科學記數法表示為()A.3382×108元B.3.382×108元C.338.2×109元D.3.382×1011元二、填空題(本大題共6個小題,每小題3分,共18分)11.將三角形紙片()按如圖所示的方式折疊,使點落在邊上,記為點,折痕為,已知,,若以點,,為頂點的三角形與相似,則的長度是______.12.如圖,ΔABC中,∠ACB=90°,∠ABC=25°,以點C為旋轉中心順時針旋轉后得到ΔA′B′C′,且點A在A′B′上,則旋轉角為________________°.13.已知扇形的弧長為2π,圓心角為60°,則它的半徑為________.14.若式子在實數范圍內有意義,則x的取值范圍是.15.如圖,正方形ABCD中,M為BC上一點,ME⊥AM,ME交AD的延長線于點E.若AB=12,BM=5,則DE的長為_________.16.如圖,已知函數y=x+2的圖象與函數y=(k≠0)的圖象交于A、B兩點,連接BO并延長交函數y=(k≠0)的圖象于點C,連接AC,若△ABC的面積為1.則k的值為_____.三、解答題(共8題,共72分)17.(8分)如圖,已知AB是⊙O的直徑,CD與⊙O相切于C,BE∥CO.(1)求證:BC是∠ABE的平分線;(2)若DC=8,⊙O的半徑OA=6,求CE的長.18.(8分)先化簡,再求值:,其中x=-519.(8分)某學校計劃組織全校1441名師生到相關部門規劃的林區植樹,經過研究,決定租用當地租車公司一共62輛A,B兩種型號客車作為交通工具.下表是租車公司提供給學校有關兩種型號客車的載客量和租金信息:型號載客量租金單價A30人/輛380元/輛B20人/輛280元/輛注:載客量指的是每輛客車最多可載該校師生的人數設學校租用A型號客車x輛,租車總費用為y元.求y與x的函數解析式,請直接寫出x的取值范圍;若要使租車總費用不超過21940元,一共有幾種租車方案?哪種租車方案總費用最?。孔钍〉目傎M用是多少?20.(8分)如圖,AB是半圓O的直徑,過點O作弦AD的垂線交半圓O于點E,交AC于點C,使∠BED=∠C.(1)判斷直線AC與圓O的位置關系,并證明你的結論;(2)若AC=8,cos∠BED=4521.(8分)某校要求八年級同學在課外活動中,必須在五項球類(籃球、足球、排球、羽毛球、乒乓球)活動中任選一項(只能選一項)參加訓練,為了了解八年級學生參加球類活動的整體情況,現以八年級(2)班作為樣本,對該班學生參加球類活動的情況進行統計,并繪制了如圖所示的不完整統計表和扇形統計圖:八年級(2)班參加球類活動人數情況統計表項目籃球足球乒乓球排球羽毛球人數a6576八年級(2)班學生參加球類活動人數情況扇形統計圖根據圖中提供的信息,解答下列問題:a=,b=.該校八年級學生共有600人,則該年級參加足球活動的人數約人;該班參加乒乓球活動的5位同學中,有3位男同學(A,B,C)和2位女同學(D,E),現準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.22.(10分)解方程:.23.(12分)4月9日上午8時,2017徐州國際馬拉松賽鳴槍開跑,一名歲的男子帶著他的兩個孩子一同參加了比賽,下面是兩個孩子與記者的對話:根據對話內容,請你用方程的知識幫記者求出哥哥和妹妹的年齡.24.如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為80海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向的B處,求此時輪船所在的B處與燈塔P的距離.(參考數據:≈2.449,結果保留整數)
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
首先求出∠MPO=∠QON,利用AAS證明△PMO≌△ONQ,即可得到PM=ON,OM=QN,進而求出Q點坐標.【詳解】作圖如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,∵,∴△PMO≌△ONQ,∴PM=ON,OM=QN,∵P點坐標為(﹣4,2),∴Q點坐標為(2,4),故選A.【點睛】此題主要考查了旋轉的性質,以及全等三角形的判定和性質,關鍵是掌握旋轉后對應線段相等.2、C【解析】
由折疊得到EB=EF,∠B=∠DFE,根據CE+EB=9,得到CE+EF=9,設EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出關于x的方程,求出方程的解得到x的值,確定出EF與CE的長,由FD與BC平行,得到一對內錯角相等,等量代換得到一對同位角相等,進而確定出EF與AB平行,由平行得比例,即可求出AB的長.【詳解】由折疊得到EB=EF,∠B=∠DFE,在Rt△ECF中,設EF=EB=x,得到CE=BC-EB=9-x,根據勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,解得:x=5,∴EF=EB=5,CE=4,∵FD∥BC,∴∠DFE=∠FEC,∴∠FEC=∠B,∴EF∥AB,∴,則AB===,故選C.【點睛】此題考查了翻折變換(折疊問題),涉及的知識有:勾股定理,平行線的判定與性質,平行線分線段成比例,熟練掌握折疊的性質是解本題的關鍵.3、C【解析】連結OA,如圖所示:
∵CD⊥AB,
∴AD=BD=AB=12m.在Rt△OAD中,OA=13,OD=,所以CD=OC+OD=13+5=18m.故選C.4、B【解析】
n邊形的內角和可以表示成(n-2)?180°,設這個多邊形的邊數是n,就得到關于邊數的方程,從而求出邊數,再求從一點引對角線的條數.【詳解】設這個正多邊形的邊數是n,則
(n-2)?180°=900°,
解得:n=1.
則這個正多邊形是正七邊形.所以,從一點引對角線的條數是:1-3=4.故選B【點睛】本題考核知識點:多邊形的內角和.解題關鍵點:熟記多邊形內角和公式.5、D【解析】所有小組頻數之和等于數據總數,所有頻率相加等于1.6、C【解析】試題分析:過A作AE⊥BC于E,∵AB=AC=5,BC=8,∴BE=EC=4,∴AE=3,∵D是線段BC上的動點(不含端點B,C),∴AE≤AD<AB,即3≤AD<5,∵AD為正整數,∴AD=3或AD=4,當AD=4時,E的左右兩邊各有一個點D滿足條件,∴點D的個數共有3個.故選C.考點:等腰三角形的性質;勾股定理.7、D【解析】
先對m-n+1變形得到(2m﹣n)+1,再將2m﹣n=6整體代入進行計算,即可得到答案.【詳解】mn+1=(2m﹣n)+1當2m﹣n=6時,原式=×6+1=3+1=4,故選:D.【點睛】本題考查代數式,解題的關鍵是掌握整體代入法.8、D【解析】
由旋轉的性質得到AB=BE,根據菱形的性質得到AE=AB,推出△ABE是等邊三角形,得到AB=3,AD=,根據三角函數的定義得到∠BAC=30°,求得AC⊥BE,推出C在對角線AH上,得到A,C,H共線,于是得到結論.【詳解】如圖,連接AC交BE于點O,∵將矩形ABCD繞點B按順時針方向旋轉后得到矩形EBGF,∴AB=BE,∵四邊形AEHB為菱形,∴AE=AB,∴AB=AE=BE,∴△ABE是等邊三角形,∵AB=3,AD=,∴tan∠CAB=,∴∠BAC=30°,∴AC⊥BE,∴C在對角線AH上,∴A,C,H共線,∴AO=OH=AB=,∵OC=BC=,∵∠COB=∠OBG=∠G=90°,∴四邊形OBGM是矩形,∴OM=BG=BC=,∴HM=OH﹣OM=,故選D.【點睛】本題考查了旋轉的性質,菱形的性質,等邊三角形的判定與性質,解直角三角形的應用等,熟練掌握和靈活運用相關的知識是解題的關鍵.9、D【解析】分析:根據完全平方公式、積的乘方法則、同底數冪的除法法則和算術平方根的定義計算,判斷即可.詳解:(x+y)2=x2+2xy+y2,A錯誤;(-xy2)3=-x3y6,B錯誤;x6÷x3=x3,C錯誤;==2,D正確;故選D.點睛:本題考查的是完全平方公式、積的乘方、同底數冪的除法以及算術平方根的計算,掌握完全平方公式、積的乘方法則、同底數冪的除法法則和算術平方根的定義是解題的關鍵.10、D【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【詳解】3382億=338200000000=3.382×1.故選:D.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.二、填空題(本大題共6個小題,每小題3分,共18分)11、或2【解析】
由折疊性質可知B’F=BF,△B’FC與△ABC相似,有兩種情況,分別對兩種情況進行討論,設出B’F=BF=x,列出比例式方程解方程即可得到結果.【詳解】由折疊性質可知B’F=BF,設B’F=BF=x,故CF=4-x當△B’FC∽△ABC,有,得到方程,解得x=,故BF=;當△FB’C∽△ABC,有,得到方程,解得x=2,故BF=2;綜上BF的長度可以為或2.【點睛】本題主要考查相似三角形性質,解題關鍵在于能夠對兩個相似三角形進行分類討論.12、50度【解析】
由將△ACB繞點C順時針旋轉得到△A′B′C′,即可得△ACB≌△A′B′C′,則可得∠A'=∠BAC,△AA'C是等腰三角形,又由△ACB中,∠ACB=90°,∠ABC=25°,即可求得∠A'、∠B'AB的度數,即可求得∠ACB'的度數,繼而求得∠B'CB的度數.【詳解】∵將△ACB繞點C順時針旋轉得到,∴△ACB≌,∴∠A′=∠BAC,AC=CA′,∴∠BAC=∠CAA′,∵△ACB中,∠ACB=90°,∠ABC=25°,∴∠BAC=90°?∠ABC=65°,∴∠BAC=∠CAA′=65°,∴∠B′AB=180°?65°?65°=50°,∴∠ACB′=180°?25°?50°?65°=40°,∴∠B′CB=90°?40°=50°.故答案為50.【點睛】此題考查了旋轉的性質、直角三角形的性質以及等腰三角形的性質.此題難度不大,注意掌握旋轉前后圖形的對應關系,注意數形結合思想的應用.13、6.【解析】分析:設扇形的半徑為r,根據扇形的面積公式及扇形的面積列出方程,求解即可.詳解:設扇形的半徑為r,根據題意得:60πr解得:r=6故答案為6.點睛:此題考查弧長公式,關鍵是根據弧長公式解答.14、.【解析】
根據二次根式被開方數必須是非負數的條件,要使在實數范圍內有意義,必須.故答案為15、【解析】
由勾股定理可先求得AM,利用條件可證得△ABM∽△EMA,則可求得AE的長,進一步可求得DE.【詳解】詳解:∵正方形ABCD,∴∠B=90°.∵AB=12,BM=5,∴AM=1.∵ME⊥AM,∴∠AME=90°=∠B.∵∠BAE=90°,∴∠BAM+∠MAE=∠MAE+∠E,∴∠BAM=∠E,∴△ABM∽△EMA,∴=,即=,∴AE=,∴DE=AE﹣AD=﹣12=.故答案為.【點睛】本題主要考查相似三角形的判定和性質,利用條件證得△ABM∽△EMA是解題的關鍵.16、3【解析】
連接OA.根據反比例函數的對稱性可得OB=OC,那么S△OAB=S△OAC=S△ABC=2.求出直線y=x+2與y軸交點D的坐標.設A(a,a+2),B(b,b+2),則C(-b,-b-2),根據S△OAB=2,得出a-b=2
①.根據S△OAC=2,得出-a-b=2
②,①與②聯立,求出a、b的值,即可求解.【詳解】如圖,連接OA.由題意,可得OB=OC,∴S△OAB=S△OAC=S△ABC=2.設直線y=x+2與y軸交于點D,則D(0,2),設A(a,a+2),B(b,b+2),則C(-b,-b-2),∴S△OAB=×2×(a-b)=2,∴a-b=2
①.過A點作AM⊥x軸于點M,過C點作CN⊥x軸于點N,則S△OAM=S△OCN=k,∴S△OAC=S△OAM+S梯形AMNC-S△OCN=S梯形AMNC=2,∴(-b-2+a+2)(-b-a)=2,將①代入,得∴-a-b=2
②,①+②,得-2b=6,b=-3,①-②,得2a=2,a=1,∴A(1,3),∴k=1×3=3.故答案為3.【點睛】本題考查了反比例函數與一次函數的交點問題,反比例函數的性質,反比例函數圖象上點的坐標特征,三角形的面積,待定系數法求函數的解析式等知識,綜合性較強,難度適中.根據反比例函數的對稱性得出OB=OC是解題的突破口.三、解答題(共8題,共72分)17、(1)證明見解析;(2)4.1.【解析】試題分析:(1)由BE∥CO,推出∠OCB=∠CBE,由OC=OB,推出∠OCB=∠OBC,可得∠CBE=∠CBO;(2)在Rt△CDO中,求出OD,由OC∥BE,可得,由此即可解決問題;試題解析:(1)證明:∵DE是切線,∴OC⊥DE,∵BE∥CO,∴∠OCB=∠CBE,∵OC=OB,∴∠OCB=∠OBC,∴∠CBE=∠CBO,∴BC平分∠ABE.(2)在Rt△CDO中,∵DC=1,OC=0A=6,∴OD==10,∵OC∥BE,∴,∴,∴EC=4.1.考點:切線的性質.18、,-【解析】分析:首先把括號里的式子進行通分,然后把除法運算轉化成乘法運算,進行約分化簡,最后代值計算.詳解:.當時,原式.點睛:本題主要考查分式的混合運算,注意運算順序,并熟練掌握同分、因式分解、約分等知識點.19、(1)21≤x≤62且x為整數;(2)共有25種租車方案,當租用A型號客車21輛,B型號客車41輛時,租金最少,為19460元.【解析】
(1)根據租車總費用=A、B兩種車的費用之和,列出函數關系式,再根據AB兩種車至少要能坐1441人即可得取x的取值范圍;(2)由總費用不超過21940元可得關于x的不等式,解不等式后再利用函數的性質即可解決問題.【詳解】(1)由題意得y=380x+280(62-x)=100x+17360,∵30x+20(62-x)≥1441,∴x≥20.1,∴21≤x≤62且x為整數;(2)由題意得100x+17360≤21940,解得x≤45.8,∴21≤x≤45且x為整數,∴共有25種租車方案,∵k=100>0,∴y隨x的增大而增大,當x=21時,y有最小值,y最小=100×21+17360=19460,故共有25種租車方案,當租用A型號客車21輛,B型號客車41輛時,租金最少,為19460元.【點睛】本題考查了一次函數的應用、一元一次不等式的應用等,解題的關鍵是理解題意,正確列出函數關系式,會利用函數的性質解決最值問題.20、(1)AC與⊙O相切,證明參見解析;(2).【解析】試題分析:(1)由于OC⊥AD,那么∠OAD+∠AOC=90°,又∠BED=∠BAD,且∠BED=∠C,于是∠OAD=∠C,從而有∠C+∠AOC=90°,再利用三角形內角和定理,可求∠OAC=90°,即AC是⊙O的切線;(2)連接BD,AB是直徑,那么∠ADB=90°,在Rt△AOC中,由于AC=8,∠C=∠BED,cos∠BED=,利用三角函數值,可求OA=6,即AB=12,在Rt△ABD中,由于AB=12,∠OAD=∠BED,cos∠BED=,同樣利用三角函數值,可求AD.試題解析:(1)AC與⊙O相切.∵弧BD是∠BED與∠BAD所對的弧,∴∠BAD=∠BED,∵OC⊥AD,∴∠AOC+∠BAD=90°,∴∠BED+∠AOC=90°,即∠C+∠AOC=90°,∴∠OAC=90°,∴AB⊥AC,即AC與⊙O相切;(2)連接BD.∵AB是⊙O直徑,∴∠ADB=90°,在Rt△AOC中,∠CAO=90°,∵AC=8,∠ADB=90°,cos∠C=cos∠BED=,∴AO=6,∴AB=12,在Rt△ABD中,∵cos∠OAD=cos∠BED
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 福建莆田三模數學試卷
- 二四年高職高考數學試卷
- 大學新聞寫作培訓課件
- 肌肉牽伸技術課件雙語
- 阜城中考數學試卷
- 2025年04月廣西南寧市第五人民醫院人才招聘14人筆試歷年專業考點(難、易錯點)附帶答案詳解
- 2025年浙江醫療衛生招聘寧波大學附屬人民醫院招聘編外人員2人筆試歷年專業考點(難、易錯點)附帶答案詳解
- 2025至2030代理記賬產業市場深度分析及前景趨勢與投資報告
- 2025至2030畜牧行業市場占有率及投資前景評估規劃報告
- 2025至2030寵物保健品行業市場發展分析及發展趨勢與投資管理報告
- 小學音樂 花城版 三年級《蟲兒飛》課件
- 公共關系學-實訓項目1:公關三要素分析
- 網頁設計基礎ppt課件(完整版)
- 貴陽市建設工程消防整改驗收申請表
- GB∕T 8163-2018 輸送流體用無縫鋼管
- 機動車排放檢驗檢測方法內部審批程序
- 2MW工商業分布式光伏電站項目可行性研究報告
- 吉安土地利用總體規劃
- 小學五年級下冊體育教案_(全冊)
- 公司級安全技術交底內容
- 理化組集體備課記錄(114)
評論
0/150
提交評論