




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,正三棱柱各條棱的長度均相等,為的中點,分別是線段和線段的動點(含端點),且滿足,當運動時,下列結論中不正確的是A.在內總存在與平面平行的線段B.平面平面C.三棱錐的體積為定值D.可能為直角三角形2.已知是虛數單位,若,,則實數()A.或 B.-1或1 C.1 D.3.執行如圖所示的程序框圖,若輸出的結果為3,則可輸入的實數值的個數為()A.1 B.2 C.3 D.44.函數的圖象為C,以下結論中正確的是()①圖象C關于直線對稱;②圖象C關于點對稱;③由y=2sin2x的圖象向右平移個單位長度可以得到圖象C.A.① B.①② C.②③ D.①②③5.若的展開式中二項式系數和為256,則二項式展開式中有理項系數之和為()A.85 B.84 C.57 D.566.如圖,四邊形為平行四邊形,為中點,為的三等分點(靠近)若,則的值為()A. B. C. D.7.在直角梯形中,,,,,點為上一點,且,當的值最大時,()A. B.2 C. D.8.幻方最早起源于我國,由正整數1,2,3,……,這個數填入方格中,使得每行、每列、每條對角線上的數的和相等,這個正方形數陣就叫階幻方.定義為階幻方對角線上所有數的和,如,則()A.55 B.500 C.505 D.50509.已知實數、滿足不等式組,則的最大值為()A. B. C. D.10.若集合,,則=()A. B. C. D.11.已知半徑為2的球內有一個內接圓柱,若圓柱的高為2,則球的體積與圓柱的體積的比為()A. B. C. D.12.在中,,,,則在方向上的投影是()A.4 B.3 C.-4 D.-3二、填空題:本題共4小題,每小題5分,共20分。13.函數的圖象在處的切線與直線互相垂直,則_____.14.設滿足約束條件,則目標函數的最小值為_.15.設實數,若函數的最大值為,則實數的最大值為______.16.在邊長為的菱形中,點在菱形所在的平面內.若,則_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線:,點為拋物線的焦點,焦點到直線的距離為,焦點到拋物線的準線的距離為,且.(1)求拋物線的標準方程;(2)若軸上存在點,過點的直線與拋物線相交于、兩點,且為定值,求點的坐標.18.(12分)如圖,設橢圓:,長軸的右端點與拋物線:的焦點重合,且橢圓的離心率是.(Ⅰ)求橢圓的標準方程;(Ⅱ)過作直線交拋物線于,兩點,過且與直線垂直的直線交橢圓于另一點,求面積的最小值,以及取到最小值時直線的方程.19.(12分)已知橢圓的右焦點為,過作軸的垂線交橢圓于點(點在軸上方),斜率為的直線交橢圓于兩點,過點作直線交橢圓于點,且,直線交軸于點.(1)設橢圓的離心率為,當點為橢圓的右頂點時,的坐標為,求的值.(2)若橢圓的方程為,且,是否存在使得成立?如果存在,求出的值;如果不存在,請說明理由.20.(12分)設函數,.(1)求函數的極值;(2)對任意,都有,求實數a的取值范圍.21.(12分)在四棱錐中,底面是邊長為2的菱形,是的中點.(1)證明:平面;(2)設是線段上的動點,當點到平面距離最大時,求三棱錐的體積.22.(10分)已知在中,a、b、c分別為角A、B、C的對邊,且.(1)求角A的值;(2)若,設角,周長為y,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
A項用平行于平面ABC的平面與平面MDN相交,則交線與平面ABC平行;B項利用線面垂直的判定定理;C項三棱錐與三棱錐體積相等,三棱錐的底面積是定值,高也是定值,則體積是定值;D項用反證法說明三角形DMN不可能是直角三角形.【詳解】A項,用平行于平面ABC的平面截平面MND,則交線平行于平面ABC,故正確;B項,如圖:當M、N分別在BB1、CC1上運動時,若滿足BM=CN,則線段MN必過正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正確;C項,當M、N分別在BB1、CC1上運動時,△A1DM的面積不變,N到平面A1DM的距離不變,所以棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,故正確;D項,若△DMN為直角三角形,則必是以∠MDN為直角的直角三角形,但MN的最大值為BC1,而此時DM,DN的長大于BB1,所以△DMN不可能為直角三角形,故錯誤.故選D【點睛】本題考查了命題真假判斷、棱柱的結構特征、空間想象力和思維能力,意在考查對線面、面面平行、垂直的判定和性質的應用,是中檔題.2、B【解析】
由題意得,,然后求解即可【詳解】∵,∴.又∵,∴,∴.【點睛】本題考查復數的運算,屬于基礎題3、C【解析】試題分析:根據題意,當時,令,得;當時,令,得,故輸入的實數值的個數為1.考點:程序框圖.4、B【解析】
根據三角函數的對稱軸、對稱中心和圖象變換的知識,判斷出正確的結論.【詳解】因為,又,所以①正確.,所以②正確.將的圖象向右平移個單位長度,得,所以③錯誤.所以①②正確,③錯誤.故選:B【點睛】本小題主要考查三角函數的對稱軸、對稱中心,考查三角函數圖象變換,屬于基礎題.5、A【解析】
先求,再確定展開式中的有理項,最后求系數之和.【詳解】解:的展開式中二項式系數和為256故,要求展開式中的有理項,則則二項式展開式中有理項系數之和為:故選:A【點睛】考查二項式的二項式系數及展開式中有理項系數的確定,基礎題.6、D【解析】
使用不同方法用表示出,結合平面向量的基本定理列出方程解出.【詳解】解:,又解得,所以故選:D【點睛】本題考查了平面向量的基本定理及其意義,屬于基礎題.7、B【解析】
由題,可求出,所以,根據共線定理,設,利用向量三角形法則求出,結合題給,得出,進而得出,最后利用二次函數求出的最大值,即可求出.【詳解】由題意,直角梯形中,,,,,可求得,所以·∵點在線段上,設,則,即,又因為所以,所以,當時,等號成立.所以.故選:B.【點睛】本題考查平面向量線性運算中的加法運算、向量共線定理,以及運用二次函數求最值,考查轉化思想和解題能力.8、C【解析】
因為幻方的每行、每列、每條對角線上的數的和相等,可得,即得解.【詳解】因為幻方的每行、每列、每條對角線上的數的和相等,所以階幻方對角線上數的和就等于每行(或每列)的數的和,又階幻方有行(或列),因此,,于是.故選:C【點睛】本題考查了數陣問題,考查了學生邏輯推理,數學運算的能力,屬于中檔題.9、A【解析】
畫出不等式組所表示的平面區域,結合圖形確定目標函數的最優解,代入即可求解,得到答案.【詳解】畫出不等式組所表示平面區域,如圖所示,由目標函數,化為直線,當直線過點A時,此時直線在y軸上的截距最大,目標函數取得最大值,又由,解得,所以目標函數的最大值為,故選A.【點睛】本題主要考查簡單線性規劃求解目標函數的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標函數的最優解是解答的關鍵,著重考查了數形結合思想,及推理與計算能力,屬于基礎題.10、C【解析】試題分析:化簡集合故選C.考點:集合的運算.11、D【解析】
分別求出球和圓柱的體積,然后可得比值.【詳解】設圓柱的底面圓半徑為,則,所以圓柱的體積.又球的體積,所以球的體積與圓柱的體積的比,故選D.【點睛】本題主要考查幾何體的體積求解,側重考查數學運算的核心素養.12、D【解析】分析:根據平面向量的數量積可得,再結合圖形求出與方向上的投影即可.詳解:如圖所示:,,,又,,在方向上的投影是:,故選D.點睛:本題考查了平面向量的數量積以及投影的應用問題,也考查了數形結合思想的應用問題.二、填空題:本題共4小題,每小題5分,共20分。13、1.【解析】
求函數的導數,根據導數的幾何意義結合直線垂直的直線斜率的關系建立方程關系進行求解即可.【詳解】函數的圖象在處的切線與直線垂直,函數的圖象在的切線斜率本題正確結果:【點睛】本題主要考查直線垂直的應用以及導數的幾何意義,根據條件建立方程關系是解決本題的關鍵.14、【解析】
根據滿足約束條件,畫出可行域,將目標函數,轉化為,平移直線,找到直線在軸上截距最小時的點,此時,目標函數取得最小值.【詳解】由滿足約束條件,畫出可行域如圖所示陰影部分:將目標函數,轉化為,平移直線,找到直線在軸上截距最小時的點此時,目標函數取得最小值,最小值為故答案為:-1【點睛】本題主要考查線性規劃求最值,還考查了數形結合的思想方法,屬于基礎題.15、【解析】
根據,則當時,,即.當時,顯然成立;當時,由,轉化為,令,用導數法求其最大值即可.【詳解】因為,又當時,,即.當時,顯然成立;當時,由等價于,令,,當時,,單調遞增,當時,,單調遞減,,則,又,得,因此的最大值為.故答案為:【點睛】本題主要考查導數在函數中的應用,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.16、【解析】
以菱形的中心為坐標原點建立平面直角坐標系,再設,根據求出的坐標,進而求得即可.【詳解】解:連接設交于點以點為原點,分別以直線為軸,建立如圖所示的平面直角坐標系,則:設得,解得,,或,顯然得出的是定值,取則,.故答案為:.【點睛】本題主要考查了建立平面直角坐標系求解向量數量積的有關問題,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)先分別表示出,然后根據求解出的值,則的標準方程可求;(2)設出直線的方程并聯立拋物線方程得到韋達定理形式,然后根據距離公式表示出并代入韋達定理形式,由此判斷出為定值時的坐標.【詳解】(1)由題意可得,焦點,,則,,∴解得.拋物線的標準方程為(2)設,設點,,顯然直線的斜率不為0.設直線的方程為聯立方程,整理可得,,∴,∴要使為定值,必有,解得,∴為定值時,點的坐標為【點睛】本題考查拋物線方程的求解以及拋物線中的定值問題,難度一般.(1)處理直線與拋物線相交對應的定值問題,聯立直線方程借助韋達定理形式是常用方法;(2)直線與圓錐曲線的問題中,直線方程的設法有時能很大程度上起到簡化運算的作用。18、(Ⅰ);(Ⅱ)面積的最小值為9,.【解析】
(Ⅰ)由已知求出拋物線的焦點坐標即得橢圓中的,再由離心率可求得,從而得值,得標準方程;(Ⅱ)設直線方程為,設,把直線方程代入拋物線方程,化為的一元二次方程,由韋達定理得,由弦長公式得,同理求得點的橫坐標,于是可得,將面積表示為參數的函數,利用導數可求得最大值.【詳解】(Ⅰ)∵橢圓:,長軸的右端點與拋物線:的焦點重合,∴,又∵橢圓的離心率是,∴,,∴橢圓的標準方程為.(Ⅱ)過點的直線的方程設為,設,,聯立得,∴,,∴.過且與直線垂直的直線設為,聯立得,∴,故,∴,面積.令,則,,令,則,即時,面積最小,即當時,面積的最小值為9,此時直線的方程為.【點睛】本題考查橢圓方程的求解,拋物線中弦長的求解,涉及三角形面積范圍問題,利用導數求函數的最值問題,屬綜合困難題.19、(1);(2)不存在,理由見解析【解析】
(1)寫出,根據,斜率乘積為-1,建立等量關系求解離心率;(2)寫出直線AB的方程,根據韋達定理求出點B的坐標,計算出弦長,根據垂直關系同理可得,利用等式即可得解.【詳解】(1)由題可得,過點作直線交橢圓于點,且,直線交軸于點.點為橢圓的右頂點時,的坐標為,即,,化簡得:,即,解得或(舍去),所以;(2)橢圓的方程為,由(1)可得,聯立得:,設B的橫坐標,根據韋達定理,即,,所以,同理可得若存在使得成立,則,化簡得:,,此方程無解,所以不存在使得成立.【點睛】此題考查求橢圓離心率,根據直線與橢圓的位置關系解決弦長問題,關鍵在于熟練掌握解析幾何常用方法,尤其是韋達定理在解決解析幾何問題中的應用.20、(1)當時,無極值;當時,極小值為;(2).【解析】
(1)求導,對參數進行分類討論,即可容易求得函數的極值;(2)構造函數,兩次求導,根據函數單調性,由恒成立問題求參數范圍即可.【詳解】(1)依題,當時,,函數在上單調遞增,此時函數無極值;當時,令,得,令,得所以函數在上單調遞增,在上單調遞減.此時函數有極小值,且極小值為.綜上:當時,函數無極值;當時,函數有極小值,極小值為.(2)令易得且,令所以,因為,,從而,所以,在上單調遞增.又若,則所以在上單調遞增,從而,所以時滿足題意.若,所以,,在中,令,由(1)的單調性可知,有最小值,從而.所以所以,由零點存在性定理:,使且在上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新能源方面的創業計劃書
- 五年級數學課外補習計劃
- 心理咨詢領域的糾紛處理流程
- 建設工程投標確認函范文
- 河南重點項目-駐馬店確山納米碳酸鈣項目可行性研究報告
- 環境保護領域的風險管理與預防措施
- IT項目工程成本控制流程解析
- 傳染病控制中心現狀分析報告及未來五至十年發展趨勢
- 九年級物理學習進度安排
- 2025年頭巾市場分析現狀
- dlt-5161-2018電氣裝置安裝工程質量檢驗及評定規程
- 用戶生命周期管理策略-洞察分析
- 第三屆中國長三角地區融資擔保職業技能競賽選拔賽試題庫500題(含答案)
- 2025屆安徽省A10聯盟高三第二次調研數學試卷含解析
- 項目管理與工程經濟決策知到智慧樹章節測試課后答案2024年秋哈爾濱工程大學
- 常見皮膚病診療規范
- 2024年中英城市更新白皮書
- 高三英語一輪復習:節日主題的詞匯復習 課件
- 中建消防工程專項施工方案
- 無創機械通氣護理要點
- 七下道法【選擇題】專練50題
評論
0/150
提交評論