2023屆廣西北部灣經濟區四市同城數學九年級上冊期末質量跟蹤監視模擬試題含解析_第1頁
2023屆廣西北部灣經濟區四市同城數學九年級上冊期末質量跟蹤監視模擬試題含解析_第2頁
2023屆廣西北部灣經濟區四市同城數學九年級上冊期末質量跟蹤監視模擬試題含解析_第3頁
2023屆廣西北部灣經濟區四市同城數學九年級上冊期末質量跟蹤監視模擬試題含解析_第4頁
2023屆廣西北部灣經濟區四市同城數學九年級上冊期末質量跟蹤監視模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.如圖,已知拋物線y=ax2+bx+c經過點(﹣1,0),對稱軸是x=1,現有結論:①abc>0②9a﹣3b+c=0③b=﹣2a④(﹣1)b+c<0,其中正確的有()A.1個 B.2個 C.3個 D.4個2.主視圖、左視圖、俯視圖分別為下列三個圖形的物體是()A. B. C. D.3.如圖是由幾個大小相同的小正方體組成的立體圖形的俯視圖,則這個立體圖形可能是下圖中的()A. B. C. D.4.如圖,AB是半圓的直徑,O為圓心,C是半圓上的點,D是上的點,若∠D=110°,則∠AOC的度數為()A.130° B.135° C.140° D.145°5.sin65°與cos26°之間的關系為()A.sin65°<cos26° B.sin65°>cos26°C.sin65°=cos26° D.sin65°+cos26°=16.把拋物線y=﹣x2向右平移1個單位,再向下平移2個單位,所得拋物線是()A.y=(x﹣1)+2 B.y=﹣(x﹣1)+2C.y=﹣(x+1)+2 D.y=﹣(x﹣1)﹣27.如圖,A,B是反比例函數y=圖象上兩點,AC⊥y軸于C,BD⊥x軸于D,AC=BD=OC,S四邊形ABCD=9,則k值為()A.8 B.10 C.12 D.1.8.一元二次方程x2﹣6x﹣1=0配方后可變形為()A. B.C. D.9.若關于x的一元二次方程kx2﹣2x+1=0有兩個不相等的實數根,則實數k的取值范圍是()A.k>1 B.k<1 C.k>1且k≠0 D.k<1且k≠010.若,,為二次函數的圖象上的三點,則,,的大小關系是()A.y1<y2<y3 B.y2<y1<y3 C.y3<y1<y2 D.y1<y3<y2二、填空題(每小題3分,共24分)11.已知二次函數y=ax2+bx+c的圖象如圖所示,對稱軸為直線x=1,則下列結論:①abc>0;②方程ax2+bx+c=0的兩根是x1=﹣1,x2=3;③2a+b=0;④4a2+2b+c<0,其中正確結論的序號為_____.12.如圖,坐標系中正方形網格的單位長度為1,拋物線y1=-x2+3向下平移2個單位后得拋物線y2,則陰影部分的面積S=_____________.13.如圖,點G是△ABC的重心,過點G作GE//BC,交AC于點E,連結GC.若△ABC的面積為1,則△GEC的面積為____________.14.如圖,的半徑為,的面積為,點為弦上一動點,當長為整數時,點有__________個.15.如圖,在邊長為的正方形中,點為靠近點的四等分點,點為中點,將沿翻折得到連接則點到所在直線距離為________________.16.半徑為2的圓中,60°的圓心角所對的弧的弧長為_____.17.如圖,在中,,為邊上的中線,過點作于點,過點作的平行線,交的延長線于點,在的延長線上截取,連接、.若,,則的長為____________.18.如圖,已知,,則_____.三、解答題(共66分)19.(10分)如圖,將半徑為2cm的圓形紙片折疊后,圓弧恰好經過圓心O,求折痕AB的長.20.(6分)地下停車場的設計大大緩解了住宅小區停車難的問題,如圖是龍泉某小區的地下停車庫坡道入口的設計示意圖,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根據規定,地下停車庫坡道入口上方要張貼限高標志,以便告知駕駛員所駕車輛能否安全駛入.小剛認為CD的長就是所限制的高度,而小亮認為應該以CE的長作為限制的高度.小剛和小亮誰說得對?請你判斷并計算出正確的限制高度.(結果精確到0.1m,參考數據:sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)21.(6分)如圖,是⊙的直徑,弦,垂足為,連接.過上一點作交的延長線于點,連接交于點,且.(1)求證:是⊙的切線;(2)延長交的延長線于點,若,,求的長.22.(8分)如圖,一次函數的圖象與反比例函數的圖象交于點兩點,其中點,與軸交于點.求一次函數和反比例函數的表達式;求點坐標;根據圖象,直接寫出不等式的解集.23.(8分)如圖,已知拋物線y=-x2+mx+3與x軸交于點A、B兩點,與y軸交于C點,點B的坐標為(3,0),拋物線與直線y=-x+3交于C、D兩點.連接BD、AD.(1)求m的值.(2)拋物線上有一點P,滿足S△ABP=4S△ABD,求點P的坐標.24.(8分)拋物線y=ax2+bx+1經過點A(﹣1,0),B(1,0),與y軸交于點C.點D(xD,yD)為拋物線上一個動點,其中1<xD<1.連接AC,BC,DB,DC.(1)求該拋物線的解析式;(2)當△BCD的面積等于△AOC的面積的2倍時,求點D的坐標;(1)在(2)的條件下,若點M是x軸上一動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點B,D,M,N為頂點的四邊形是平行四邊形.若存在,求出點M的坐標;若不存在,請說明理由.25.(10分)如圖,小明欲測量一座古塔的高度,他拿出一根竹桿豎直插在地面上,然后自己退后,使眼睛通過竹桿的頂端剛好看到塔頂,若小明眼睛離地面,竹標頂端離地面,小明到竹桿的距離,竹桿到塔底的距離,求這座古塔的高度.26.(10分)如圖,在直角坐標系中,為坐標原點.已知反比例函數的圖象經過點,過點作軸于點,的面積為.(1)求和的值;(2)若點在反比例函數的圖象上運動,觀察圖象,當點的縱坐標是,則對應的的取值范圍是.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據拋物線的開口方向、對稱軸的位置,頂點坐標,以及二次函數的增減性,逐個進行判斷即可.【詳解】解:∵拋物線y=ax2+bx+c開口向上,對稱軸是x=1,與y軸的交點在負半軸,∴a>0,b<0,c<0,∴abc>0,因此①正確;∵對稱軸是x=1,即:=1,也就是:b=﹣2a,因此③正確;由拋物線y=ax2+bx+c經過點(﹣1,0),對稱軸是x=1,可得與x軸另一個交點坐標為(3,0),∴9a+3b+c=0,而b≠0,因此②9a﹣3b+c=0是不正確的;∵(﹣1)b+c=b﹣b+c,b=﹣2a,∴(﹣1)b+c=2a+b+c,把x=代入y=ax2+bx+c得,y=2a+b+c,由函數的圖象可得此時y<0,即:(﹣1)b+c<0,因此④是正確的,故正確的結論有3個,故選:C.【點睛】考查二次函數的圖象和性質,掌握二次函數的圖象和性質是正確解答的關鍵,將問題進行適當的轉化,是解決此類問題的常用方法.2、A【解析】分析:本題時給出三視圖,利用空間想象力得出立體圖形,可以先從主視圖進行排除.解析:通過給出的主視圖,只有A選項符合條件.故選A.3、D【分析】由俯視圖判斷出組合的正方體的幾何體的列數即可.【詳解】根據給出的俯視圖,這個立體圖形的第一排至少有3個正方體,第二排有1個正方體.故選:D.【點睛】考查學生對三視圖掌握程度和靈活運用能力,同時也體現了對空間想象能力方面的考查.如果掌握口訣“俯視圖打地基,正視圖瘋狂蓋,左視圖拆違章”就更容易得到答案.4、C【分析】根據“圓內接四邊形的對角互補”,由∠D可以求得∠B,再由圓周角定理可以求得∠AOC的度數.【詳解】解:∵∠D=110°,∴∠B=180°﹣110°=70°,∴∠AOC=2∠B=140°,故選C.【點睛】本題考查圓周角定理及圓內接四邊形的性質,熟練掌握有關定理和性質的應用是解題關鍵.5、B【分析】首先要將它們轉換為同一種銳角三角函數,再根據函數的增減性進行分析.【詳解】∵cos26°=sin64°,正弦值隨著角的增大而增大,∴sin65°>cos26°.故選:B.【點睛】掌握正余弦的轉換方法,了解銳角三角函數的增減性是解答本題的關鍵.6、D【分析】根據二次函數圖象左加右減,上加下減的平移規律進行求解.【詳解】拋物線y=﹣x1向右平移1個單位,得:y=﹣(x﹣1)1;再向下平移1個單位,得:y=﹣(x﹣1)1﹣1.故選:D.【點睛】此題主要考查了二次函數與幾何變換,正確記憶平移規律是解題關鍵.7、B【分析】分別延長CA、DB,它們相交于E,如圖,設AC=t,則BD=t,OC=5t,根據反比例函數圖象上點的坐標特征得到k=OD?t=t?5t,則OD=5t,所以B點坐標為(5t,t),于是AE=CE﹣CA=4t,BE=DE﹣BD=4t,再利用S四邊形ABCD=S△ECD﹣S△EAB得到?5t?5t﹣?4t?4t=9,解得t2=2,然后根據k=t?5t進行計算.【詳解】解:分別延長CA、DB,它們相交于E,如圖,設AC=t,則BD=t,OC=5t,∵A,B是反比例函數y=圖象上兩點,∴k=OD?t=t?5t,∴OD=5t,∴B點坐標為(5t,t),∴AE=CE﹣CA=4t,BE=DE﹣BD=4t,∵S四邊形ABCD=S△ECD﹣S△EAB,∴?5t?5t﹣?4t?4t=9,∴t2=2,∴k=t?5t=5t2=5×2=2.故選:B.【點睛】本題考查了比例系數k的幾何意義:在反比例函數y=xk圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.8、B【分析】根據配方法即可求出答案.【詳解】解:∵x2﹣6x﹣1=0,∴x2﹣6x=1,∴(x﹣3)2=10,故選B.【點睛】此題主要考查一元二次方程的配方法,解題的關鍵是熟知配方法的運用.9、D【解析】根據一元二次方程的定義和△的意義得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范圍.【詳解】∵關于x的一元二次方程kx2﹣2x+1=1有兩個不相等的實數根,∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,解得k<1且k≠1.∴k的取值范圍為k<1且k≠1.故選D.【點睛】本題考查了一元二次方程ax2+bx+c=1(a≠1)的根的判別式△=b2﹣4ac:當△>1,方程有兩個不相等的實數根;當△=1,方程有兩個相等的實數根;當△<1,方程沒有實數根.也考查了一元二次方程的定義.10、B【解析】試題分析:根據二次函數的解析式得出圖象的開口向上,對稱軸是直線x=﹣2,根據x>﹣2時,y隨x的增大而增大,即可得出答案.解:∵y=(x+2)2﹣9,∴圖象的開口向上,對稱軸是直線x=﹣2,A(﹣4,y1)關于直線x=﹣2的對稱點是(0,y1),∵﹣<0<3,∴y2<y1<y3,故選B.點評:本題主要考查對二次函數圖象上點的坐標特征,二次函數的性質等知識點的理解和掌握,能熟練地運用二次函數的性質進行推理是解此題的關鍵.二、填空題(每小題3分,共24分)11、②③.【分析】根據二次函數圖象的開口方向、對稱軸位置、與x軸的交點坐標等知識,逐個判斷即可.【詳解】由圖象可知,拋物線開口向下,a<0,對稱軸在y軸右側,a、b異號,b>0,與y軸交于正半軸,c>0,所以abc<0,因此①是錯誤的;當y=0時,拋物線與x軸交點的橫坐標就是ax2+bx+c=0的兩根,由圖象可得x1=﹣1,x2=3;因此②正確;對稱軸為x=1,即﹣=1,也就是2a+b=0;因此③正確,∵a<0,a2>0,b>0,c>0,∴4a2+2b+c>0,因此④是錯誤的,故答案為:②③.【點睛】此題考查二次函數的圖象和性質,掌握a、b、c的值決定拋物線的位置以及二次函數與一元二次方程的關系,是正確判斷的前提.12、1【解析】根據已知得出陰影部分即為平行四邊形的面積.【詳解】解:根據題意知,圖中陰影部分的面積即為平行四邊形的面積:2×2=1.

故答案是:1.【點睛】本題考查了二次函數圖象與幾何變換.解題關鍵是把陰影部分的面積整理為規則圖形的面積.13、【分析】如圖,延長AG交BC于D,利用相似三角形的面積比等于相似比的平方解決問題即可.【詳解】解:連接AG并延長交BC于點D,∴D為BC中點∴又∵∴∵G為重心∴∴∴,又∵∴.【點睛】本題考查三角形的重心,三角形的面積,相似三角形的判定和性質等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.14、4【分析】從的半徑為,的面積為,可得∠AOB=90°,故OP的最小值為OP⊥AB時,為3,最大值為P與A或B點重合時,為6,故,當長為整數時,OP可以為5或6,根據圓的對稱性,這樣的P點共有4個.【詳解】∵的半徑為,的面積為∴∠AOB=90°又OA=OB=6∴AB=當OP⊥AB時,OP有最小值,此時OP=AB=當P與A或B點重合時,OP有最大值,為6,故當OP長為整數時,OP可以為5或6,根據圓的對稱性,這樣的P點共有4個.故答案為:4【點睛】本題考查的是圓的對稱性及最大值、最小值問題,根據“垂線段最短”確定OP的取值范圍是關鍵.15、【分析】延長交BC于點M,連接FM,延長交DA的延長線于點P,作DN⊥CP,先證明∽,利用相似的性質求出,然后證明∽,利用相似的性質求出EP,從而得到DP的長,再利用勾股定理求出CP的長,最后利用等面積法計算DN即可.【詳解】如圖,延長交BC于點M,連接FM,延長交DA的延長線于點P,作DN⊥CP,由題可得,,,∴,∵F為AB中點,∴,又∵FM=FM,∴≌(HL),∴,,由折疊可知,,∴,又∵∴,∴∽,∴,∵AD=4,E為四等分點,∴,∴,∴,∴,∵,∴,,∴∽,∴,即,∴EP=6,∴DP=EP+DE=7,在中,,∵,∴.故答案為:.【點睛】本題考查了折疊的性質,全等三角形的判定與性質,相似三角形的判定與性質,勾股定理以及等面積法等知識,較為綜合,難度較大,重點在于作輔助線構造全等或相似三角形.16、【解析】根據弧長公式可得:=,故答案為.17、【分析】首先可判斷四邊形BGFD是平行四邊形,再由直角三角形斜邊中線等于斜邊一半,可得BD=FD,則可判斷四邊形BGFD是菱形,則GF=10,則AF=16,AC=20,在Rt△ACF中利用勾股定理可求出CF的值.【詳解】解:∵AG∥BD,BD=FG,∴四邊形BGFD是平行四邊形,∵CF⊥BD,∴CF⊥AG,又∵點D是AC中點,∴BD=DF=AC,∴四邊形BGFD是菱形,∴GF=BG=10,則AF=26-10=16,AC=2×10=20,∵在Rt△ACF中,∠CFA=90°,∴即故答案是:1.【點睛】本題考查了菱形的判定與性質、勾股定理及直角三角形的斜邊中線的性質,解答本題的關鍵是判斷出四邊形BGFD是菱形.18、105°【解析】如圖,根據鄰補角的定義求出∠3的度數,繼而根據平行線的性質即可求得答案.【詳解】∵∠1+∠3=180°,∠1=75°,∴∠3=105°,∵a//b,∴∠2=∠3=105°,故答案為:105°.【點睛】本題考查了鄰補角的定義,平行線的性質,熟練掌握兩直線平行,內錯角相等是解本題的關鍵.三、解答題(共66分)19、AB=2cm【分析】在圖中構建直角三角形,先根據勾股定理得AD的長,再根據垂徑定理得AB的長.【詳解】解:如圖:作OD⊥AB于D,連接OA.根據題意得:OD=OA=1cm,再根據勾股定理得:AD===cm,由垂徑定理得:AB=2cm.【點睛】本題考查了垂徑定理,根據題意構造垂徑、應用勾股定理是解答本題的關鍵.20、小亮說的對,CE為2.6m.【解析】先根據CE⊥AE,判斷出CE為高,再根據解直角三角形的知識解答.【詳解】解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,∵tan∠BAD=BDBA∴BD=10×tan18°,∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m),在△ABD中,∠CDE=90°﹣∠BAD=72°,∵CE⊥ED,∴sin∠CDE=CECD∴CE=sin∠CDE×CD=sin72°×2.7≈2.6(m),∵2.6m<2.7m,且CE⊥AE,∴小亮說的對.答:小亮說的對,CE為2.6m.【點睛】本題主要考查了解直角三角形的應用,主要是正弦、正切概念及運算,解決本題的關鍵把實際問題轉化為數學問題.21、(1)見解析(2)【分析】(1)連接,由,推,證,得,根據切線判定定理可得;(2)連接,設⊙的半徑為,則,,在中,求得,在中,求得,由,證,得,即,可求OM.【詳解】(1)證明:連接,如圖,∵,∴,而,∴,∵,∴,∴,∵,∴,∴,即,∴,∴是⊙的切線;(2)解:連接,如圖,設⊙的半徑為,則,,在中,,解得,在中,,∵,∴,∴,∴,即,∴.【點睛】考核知識點:切線判定,相似三角形判定和性質.理解切線判定和相似三角形判定是關鍵.22、(1)y=-x-2,y=-,(2)C(1,-3),(3)-3<x<0或x>1.【分析】(1)將點B的坐標代入一次函數中即可求出一次函數的表達式,進而求出A點坐標,然后再將A點坐標代入反比例函數中即可求出反比例函數的表達式;(2)將一次函數與反比例函數聯立即可求出C點坐標;(3)根據兩交點坐標及圖象即可得出答案.【詳解】解:(1)由點B(-2,0)在一次函數y=-x+b上,得b=-2,∴一次函數的表達式為y=-x-2,由點A(-3,m)在y=-x-2上,得m=1,∴A(-3,1),把A(-3,1)代入數y=(x<0)得k=-3,∴反比例函數的表達式為:y=-,(2)解得或∴C(1,-3)(3)當時,反比例函數的圖象在一次函數圖象的上方,根據圖象可知此時-3<x<0或x>1.∴不等式的解集為-3<x<0或x>1.【點睛】本題主要考查反比例函數與一次函數綜合,掌握待定系數法及數形結合是解題的關鍵.23、(1)m=2;(2)P(1+,-9)或P(1-,-9)【解析】(1)利用待定系數法即可解決問題;(2)利用方程組首先求出點D坐標.由面積關系,推出點P的縱坐標,再利用待定系數法求出點P的坐標即可.【詳解】解:(1)∵拋物線y=-x2+mx+3過(3,0),∴0=-9+3m+3,∴m=2(2)由,得,,∴D(,-),∵S△ABP=4S△ABD,∴AB×|yP|=4×AB×,∴|yP|=9,yP=±9,當y=9時,-x2+2x+3=9,無實數解,當y=-9時,-x2+2x+3=-9,解得:x1=1+,x2=1-,∴P(1+,-9)或P(1-,-9).24、(1)拋物線的解析式為y=﹣x2+2x+1;(2)點D坐標(2,1);(1)M坐標(1,0)或(,0)或(﹣,0)或(5,0)【分析】(1)利用待定系數法求函數解析式;(2)根據解析式先求出△AOC的面積,設點D(xD,yD),由直線BC的解析式表示點E的坐標,求出DE的長,再由△BCD的面積等于△AOC的面積的2倍,列出關于xD的方程得到點D的坐標;(1)設點M(m,0),點N(x,y),分兩種情況討論:當BD為邊時或BD為對角線時,列中點關系式解答.【詳解】解:(1)∵拋物線y=ax2+bx+1經過點A(﹣1,0),B(1,0),∴,解得:∴拋物線的解析式為y=﹣x2+2x+1;(2)如圖,過點D作DH⊥x軸,與直線BC交于點E,∵拋物線y=﹣x2+2x+1,與y軸交于點C,∴點C(0,1),∴OC=1,∴S△AOC=×1×1=,∵點B(1,0),點C(0,1)∴直線BC解析式為y=﹣x+1,∵點D(xD,yD),∴點E(xD,﹣xD+1),yD=﹣xD2+2xD+1,∴DE=﹣xD2+2xD/

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論