2022-2023學年漯河市重點中學數學高三第一學期期末聯考試題含解析_第1頁
2022-2023學年漯河市重點中學數學高三第一學期期末聯考試題含解析_第2頁
2022-2023學年漯河市重點中學數學高三第一學期期末聯考試題含解析_第3頁
2022-2023學年漯河市重點中學數學高三第一學期期末聯考試題含解析_第4頁
2022-2023學年漯河市重點中學數學高三第一學期期末聯考試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在邊長為1的等邊三角形中,點E是中點,點F是中點,則()A. B. C. D.2.如圖,網格紙是由邊長為1的小正方形構成,若粗實線畫出的是某幾何體的三視圖,則該幾何體的表面積為()A. B. C. D.3.若的展開式中的系數之和為,則實數的值為()A. B. C. D.14.設,,則的值為()A. B.C. D.5.函數(其中,,)的圖象如圖,則此函數表達式為()A. B.C. D.6.是拋物線上一點,是圓關于直線的對稱圓上的一點,則最小值是()A. B. C. D.7.計算等于()A. B. C. D.8.已知定義在上的奇函數,其導函數為,當時,恒有.則不等式的解集為().A. B.C.或 D.或9.已知數列滿足,則()A. B. C. D.10.拋物線y2=ax(a>0)的準線與雙曲線C:x28A.8 B.6 C.4 D.211.在中,角、、的對邊分別為、、,若,,,則()A. B. C. D.12.已知集合則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,若恒成立,則的取值范圍是___________.14.某校高三年級共有名學生參加了數學測驗(滿分分),已知這名學生的數學成績均不低于分,將這名學生的數學成績分組如下:,,,,,,得到的頻率分布直方圖如圖所示,則下列說法中正確的是________(填序號).①;②這名學生中數學成績在分以下的人數為;③這名學生數學成績的中位數約為;④這名學生數學成績的平均數為.15.設的內角的對邊分別為,,.若,,,則_____________16.將函數的圖像向右平移個單位,得到函數的圖像,則函數在區間上的值域為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,已知直線的參數方程為(為參數)和曲線(為參數),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.(1)求直線和曲線的極坐標方程;(2)在極坐標系中,已知點是射線與直線的公共點,點是與曲線的公共點,求的最大值.18.(12分)如圖,在四棱錐中,底面是平行四邊形,平面,是棱上的一點,滿足平面.(Ⅰ)證明:;(Ⅱ)設,,若為棱上一點,使得直線與平面所成角的大小為30°,求的值.19.(12分)已知函數,函數,其中,是的一個極值點,且.(1)討論的單調性(2)求實數和a的值(3)證明20.(12分)已知數列滿足,,,且.(1)求證:數列為等比數列,并求出數列的通項公式;(2)設,求數列的前項和.21.(12分)如圖,過點且平行與x軸的直線交橢圓于A、B兩點,且.(1)求橢圓的標準方程;(2)過點M且斜率為正的直線交橢圓于段C、D,直線AC、BD分別交直線于點E、F,求證:是定值.22.(10分)已知函數f(x)=ex-x2-kx(其中e為自然對數的底,k為常數)有一個極大值點和一個極小值點.(1)求實數k的取值范圍;(2)證明:f(x)的極大值不小于1.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據平面向量基本定理,用來表示,然后利用數量積公式,簡單計算,可得結果.【詳解】由題可知:點E是中點,點F是中點,所以又所以則故選:C【點睛】本題考查平面向量基本定理以及數量積公式,掌握公式,細心觀察,屬基礎題.2、C【解析】

根據三視圖還原為幾何體,結合組合體的結構特征求解表面積.【詳解】由三視圖可知,該幾何體可看作是半個圓柱和一個長方體的組合體,其中半圓柱的底面半圓半徑為1,高為4,長方體的底面四邊形相鄰邊長分別為1,2,高為4,所以該幾何體的表面積,故選C.【點睛】本題主要考查三視圖的識別,利用三視圖還原成幾何體是求解關鍵,側重考查直觀想象和數學運算的核心素養.3、B【解析】

由,進而分別求出展開式中的系數及展開式中的系數,令二者之和等于,可求出實數的值.【詳解】由,則展開式中的系數為,展開式中的系數為,二者的系數之和為,得.故選:B.【點睛】本題考查二項式定理的應用,考查學生的計算求解能力,屬于基礎題.4、D【解析】

利用倍角公式求得的值,利用誘導公式求得的值,利用同角三角函數關系式求得的值,進而求得的值,最后利用正切差角公式求得結果.【詳解】,,,,,,,,故選:D.【點睛】該題考查的是有關三角函數求值問題,涉及到的知識點有誘導公式,正切倍角公式,同角三角函數關系式,正切差角公式,屬于基礎題目.5、B【解析】

由圖象的頂點坐標求出,由周期求出,通過圖象經過點,求出,從而得出函數解析式.【詳解】解:由圖象知,,則,圖中的點應對應正弦曲線中的點,所以,解得,故函數表達式為.故選:B.【點睛】本題主要考查三角函數圖象及性質,三角函數的解析式等基礎知識;考查考生的化歸與轉化思想,數形結合思想,屬于基礎題.6、C【解析】

求出點關于直線的對稱點的坐標,進而可得出圓關于直線的對稱圓的方程,利用二次函數的基本性質求出的最小值,由此可得出,即可得解.【詳解】如下圖所示:設點關于直線的對稱點為點,則,整理得,解得,即點,所以,圓關于直線的對稱圓的方程為,設點,則,當時,取最小值,因此,.故選:C.【點睛】本題考查拋物線上一點到圓上一點最值的計算,同時也考查了兩圓關于直線對稱性的應用,考查計算能力,屬于中等題.7、A【解析】

利用誘導公式、特殊角的三角函數值,結合對數運算,求得所求表達式的值.【詳解】原式.故選:A【點睛】本小題主要考查誘導公式,考查對數運算,屬于基礎題.8、D【解析】

先通過得到原函數為增函數且為偶函數,再利用到軸距離求解不等式即可.【詳解】構造函數,則由題可知,所以在時為增函數;由為奇函數,為奇函數,所以為偶函數;又,即即又為開口向上的偶函數所以,解得或故選:D【點睛】此題考查根據導函數構造原函數,偶函數解不等式等知識點,屬于較難題目.9、C【解析】

利用的前項和求出數列的通項公式,可計算出,然后利用裂項法可求出的值.【詳解】.當時,;當時,由,可得,兩式相減,可得,故,因為也適合上式,所以.依題意,,故.故選:C.【點睛】本題考查利用求,同時也考查了裂項求和法,考查計算能力,屬于中等題.10、A【解析】

求得拋物線的準線方程和雙曲線的漸近線方程,解得兩交點,由三角形的面積公式,計算即可得到所求值.【詳解】拋物線y2=ax(a>0)的準線為x=-a4,雙曲線C:x28-y24【點睛】本題考查三角形的面積的求法,注意運用拋物線的準線方程和雙曲線的漸近線方程,考查運算能力,屬于基礎題.11、B【解析】

利用兩角差的正弦公式和邊角互化思想可求得,可得出,然后利用余弦定理求出的值,最后利用正弦定理可求出的值.【詳解】,即,即,,,得,,.由余弦定理得,由正弦定理,因此,.故選:B.【點睛】本題考查三角形中角的正弦值的計算,考查兩角差的正弦公式、邊角互化思想、余弦定理與正弦定理的應用,考查運算求解能力,屬于中等題.12、B【解析】

解對數不等式可得集合A,由交集運算即可求解.【詳解】集合解得由集合交集運算可得,故選:B.【點睛】本題考查了集合交集的簡單運算,對數不等式解法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求導得到,討論和兩種情況,計算時,函數在上單調遞減,故,不符合,排除,得到答案。【詳解】因為,所以,因為,所以.當,即時,,則在上單調遞增,從而,故符合題意;當,即時,因為在上單調遞增,且,所以存在唯一的,使得.令,得,則在上單調遞減,從而,故不符合題意.綜上,的取值范圍是.故答案為:.【點睛】本題考查了不等式恒成立問題,轉化為函數的最值問題是解題的關鍵.14、②③【解析】

由頻率分布直方圖可知,解得,故①不正確;這名學生中數學成績在分以下的人數為,故②正確;設這名學生數學成績的中位數為,則,解得,故③正確;④這名學生數學成績的平均數為,故④不正確.綜上,說法正確的序號是②③.15、或【解析】試題分析:由,則可運用同角三角函數的平方關系:,已知兩邊及其對角,求角.用正弦定理;,則;可得.考點:運用正弦定理解三角形.(注意多解的情況判斷)16、【解析】

根據圖像的平移變換得到函數的解析式,再利用整體思想求函數的值域.【詳解】函數的圖像向右平移個單位得,,,.故答案為:.【點睛】本題考查三角函數圖像的平移變換、值域的求解,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意整體思想的運用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2)【解析】

(1)先將直線l和圓C的參數方程化成普通方程,再分別求出極坐標方程;(2)寫出點M和點N的極坐標,根據極徑的定義分別表示出和,利用三角函數的性質求出的最大值.【詳解】解:(1),,即極坐標方程為,,極坐標方程.(2)由題可知,,當時,.【點睛】本題考查了參數方程、普通方程和極坐標方程的互化問題,極徑的定義,以及三角函數的恒等變換,屬于中檔題.18、(Ⅰ)證明見解析(Ⅱ)【解析】

(Ⅰ)由平面,可得,又因為是的中點,即得證;(Ⅱ)如圖建立空間直角坐標系,設,計算平面的法向量,由直線與平面所成角的大小為30°,列出等式,即得解.【詳解】(Ⅰ)如圖,連接交于點,連接,則是平面與平面的交線,因為平面,故,又因為是的中點,所以是的中點,故.(Ⅱ)由條件可知,,所以,故以為坐標原點,為軸,為軸,為軸建立空間直角坐標系,則,,,,,,,設,則,設平面的法向量為,則,即,故取因為直線與平面所成角的大小為30°所以,即,解得,故此時.【點睛】本題考查了立體幾何和空間向量綜合,考查了學生邏輯推理,空間想象,數學運算的能力,屬于中檔題.19、(1)在區間單調遞增;(2);(3)證明見解析.【解析】

(1)求出,在定義域內,再次求導,可得在區間上恒成立,從而可得結論;(2)由,可得,由可得,聯立解方程組可得結果;(3)由(1)知在區間單調遞增,可證明,取,可得,而,利用裂項相消法,結合放縮法可得結果.【詳解】(1)由已知可得函數的定義域為,且,令,則有,由,可得,可知當x變化時,的變化情況如下表:1-0+極小值,即,可得在區間單調遞增;(2)由已知可得函數的定義域為,且,由已知得,即,①由可得,,②聯立①②,消去a,可得,③令,則,由(1)知,,故,在區間單調遞增,注意到,所以方程③有唯一解,代入①,可得,;(3)證明:由(1)知在區間單調遞增,故當時,,,可得在區間單調遞增,因此,當時,,即,亦即,這時,故可得,取,可得,而,故.【點睛】本題主要考查利用導數研究函數的單調性以及不等式的證明,屬于難題.不等式證明問題是近年高考命題的熱點,利用導數證明不等主要方法有兩個,一是比較簡單的不等式證明,不等式兩邊作差構造函數,利用導數研究函數的單調性,求出函數的最值即可;二是較為綜合的不等式證明,要觀察不等式特點,結合已解答的問題把要證的不等式變形,并運用已證結論先行放縮,然后再化簡或者進一步利用導數證明.20、(1)證明見解析;(2)【解析】

(1)根據題目所給遞推關系式得到,由此證得數列為等比數列,并求得其通項公式.然后利用累加法求得數列的通項公式.(2)利用錯位相減求和法求得數列的前項和【詳解】(1)已知,則,且,則為以3為首相,3為公比的等比數列,所以,.(2)由(1)得:,,①,②①-②可得,則即.【點睛】本小題主要考查根據遞推關系式證明等比數列,考查累加法求數列的通項公式,考查錯位相減求和法,屬于中檔題.21、(1);(2)證明見解析.【解析】

(1)由題意求得的坐標,代入橢圓方程求得,由此求得橢圓的標準方程.(2)設出直線的方程,聯立直線的方程和橢圓方程,可得關于的一元二次方程,設出的坐標,分別求出直線與直線的方程,從而求得兩點的縱坐標,利用根與系數關系可化簡證得為定值.【詳解】(1)由已知可得:,代入橢圓方程得:橢圓方程為;(2)設直線CD的方程為,代入,得:設,,則有,則AC的方程為,令,得BD的方程為,令,得,證畢.【點睛】本題考查橢圓方程的求法,考查直線與橢圓位置關系的應用,考查計算能力,是難題.22、(1);(2)見解析【解析】

(1)求出,記,問題轉化為方程有兩個不同解,求導,研究

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論