




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
高等傳熱學(xué)
Advanced
Heat
TransferChap.
1
Fundamental
concepts
of
convectionand erning
equationsConvection:Refresh
the
knowledge
offluid
mechanics
and
heat
transferAim
to
improve
the
capability
of
dealing
with
complicatedengineering
problems
byusingpropermethods.Fromcomplexity
to
simplicity,
then
modifythesolutions
toapply
to
the
complexity.工程熱物理高等傳熱學(xué)
Advanced
Heat
Transfer§1-1
Introduction1.
DefinitionConvection:
Heat
transfer
process
caused
by
mixing
of
coldand
hot
fluids
when
relative
displacement
occurs
betweendifferent
parts
of
the
fluid.工程熱物理高等傳熱學(xué)
Advanced
Heat
TransferConvection
heat
transfer:
Heat
transfer
process
takingplace
when
fluid
flows
through
solid
wall.Onlyoccurring
in
the
fluid;
macroscopic
displacement;
coupledwith
heat
conduction;
related
to
the
heat
conduction
across
athin
layer
adjacent
the
wall工程熱物理高等傳熱學(xué)
Advanced
Heat
TransferEffective
factorsThe
cause
ofmotion
ForcedconvectionNatural
convectionRe2Mixed
convect0i.o1n
Gr
10NaturalconvectionmixedForcedconvection
Nun
Nun
Nunforcednatural= -4. same
direction,
+; reverse
direction,
-工程熱物理高等傳熱學(xué)Advanced
Heat
Transfer2.2
Flow
regimesLaminar
flowFluid
mechanics
experiment:a
drop
of
red
ink
into
thefluidTurbulent
flowRe
ud1883,
Reynolds工程熱物理高等傳熱學(xué)
Advanced
Heat
TransferReynolds
Tube
Experiment
(1883)工程熱物理高等傳熱學(xué)
Advanced
Heat
Transfer工程熱物理高等傳熱學(xué)Advanced
Heat
TransferGeometric
factorsinternal
flowshexternal
flowscalesurface
roughnessPhase
changeBoiling,
Condensation工程熱物理高等傳熱學(xué)
Advanced
Heat
Transfer2.5
Thermophysical
properties
,
,
c
p
,
t
f
cplh
f
(u,
twThe four
factors
constitute
the
basis
for
classification
ofconvection
heat
transfer.Physical
properties
of
the
fluid
could
be
reflected
through
thenondimensional
parameters.工程熱物理高等傳熱學(xué)3.
ClassificationAdvanced
Heat
TransferForced
convectionInternal
flowExternal
flowFlow
in
circular
tubesFlow
in
noncircular
tubesFlow
over
a
plateHeat
transfer
withoutphase
changeInfinite
spaceConvectionheat
transferNatural
convectionFlow
along
atubeFlow
across
tube
bundlesVertical
pipeHorizontal
pipeHorizontal
wallCondensationPhase
changeheat
transferFinite
spaceMixed
convectionCondensation
o tical
plateCondensation
along
horizontal
tubesand
across
tube
bundlesCondensation
in
tubesBoilingPool
boilingIn-tube
boiling工程熱物理高等傳熱學(xué)
Advanced
Heat
Transfer4.
Fundamental
equationsq
tyt∞u∞Fourier’s
law
ofheat
conductionwyw,xyqc
h
tw,
x
ttwwxxyw,xtw,x
t
y
qh
=-
tNewton’s
law
ofcoolingqw
qct∞
for
external
flow:
the
fluid
temperature
away
from
the
wall,
t∞t∞
for
internal
flow:
the
average
fluid
temperature
of
the
pipe,
tbAcmu
udAcpAbc
tudAt
cApAcc
udA工程熱物理高等傳熱學(xué)
Advanced
Heat
TransferAttention
points:In
heat
conduction,
h
is
known;
here,
h
is
unknown.In
heat
conduction,
λ
is
thermal
conductivity
of
solid;
here,λ
is
thermal
conductivity
of
fluid.In
heat
conduction,
t
is
the
solid
temperature;
here,
t
is
thefluid
temperature.4.
In
the
above
equation,
h
is
local
convective
heat
transfercoefficient,
however,
Newton’s
law
of
cooling
is
applied
to
thewhole
surface
to
obtain
the
convective
heat
transfer
coefficientof
the
whole
surface.Question:
to
obtain
the
average
h,
integration
of
qx
through
the
heat
transfer
surface
or
integration
of
hx
directly
?
Whatconditions
can
we
integrate
hx
directly?工程熱物理高等傳熱學(xué)
Advanced
Heat
TransfermxAh
dAAh
=
1h
AtdA
t
h
t
t
dA
tmw,mf
,mx
w,xf
,xAAyw,xyTwo
common
boundary
conditions
in
convection
heat
transfer:Uniform
wall
temperatureUniform
heat
flux工程熱物理高等傳熱學(xué)Advanced
Heat
TransferConvective
heatttransfer
coefficientqw,x
yyw,xFluid
temperature
fieldespecially
thetemperature
distributionnear
thewallKey
to
obtain
hxt
x,
y,
z,
TemperaturefieldAffected
byflow
fieldsolve
the
mathematicalequationsFlowfieldEnergy
conservation
lawContinuity
Eq. Mass
conservation
lawMomentum
Eq. Momentum
conservation
law
field
Temperature
Energy
Eq.工程熱物理高等傳熱學(xué)
Advanced
Heat
Transfer5.
Researethod
of
convection
heat
transferyticalsolutionSolved
by
mathematical
methods
and
this
methodprovides
theoretical
guidanceObtain
correlations
of
convective
heat
transferExperimentalmethodcoefficient
through
lots
of
experiments,
and
this
is
themain
method
to
get
the
convection
heat
transfercoefficient.ogytheoryNumericalmethodEstablish
the
relationship
between
convective
heattransfer
coefficient
and
drag
coefficient
by
examining
thesimilarity
between
heat
transfer
and
momentum
transfer:Only
valid
for
certain
conditions.Through
numerical
calculations
to
obtain
theconvection
heat
transfe
coefficient
:
develop
fast工程熱物理高等傳熱學(xué)
Advanced
Heat
Transfer6.
Similarity
principle
and
dimensional
ysisExperiment
method
is
still
the
main
method
to
solve
thecomplex
convection
heat
transfer,
and
similarity
principle
canprovide
a
theoretical
guidance
for
experiment
study.h
f
(u,
,
cp
,
,
,
l)Similarity
principle
can
answer
the
following
questions:How
to
arrange
experiment
and
what ties
should
bemeasured?How
to
process
data
after
experiment?What
is
the
condition
that
the
results
obtained
can
be
applied?工程熱物理高等傳熱學(xué)
Advanced
Heat
TransferPhysical
meaning
of
the
similarity
parameters
t
t
/
t
tww
fNu-
dimensionless
excess
temperature
gradient
of
fluid
at
wall1.
Nusselt
number
Nu
hl
y
/
ly
02.
Reynolds
numberRe
ulPr-the
ratio
of
momentum
diffusivity
to
thermal
diffusivityaRe-
the
ratio
of
inertial
forces
to
viscous
forces3.
Prandtl
number
Pr
4.
Grashof
number
2Gr
gtL3Gr-the
ratio
of
the
buoyancy
to
viscous
force
acting
on
a
fluid工程熱物理高等傳熱學(xué)
Advanced
Heat
TransferRelationship
between
thesimilarity
parametersThe
solution
oftransfer
can
bedifferential
equations
describing
the
heatexpressed
by
correlations
of
similarityparameters
in
principle.□Forced
convection
heat
transfer
without
phase
change:Nu
f
(Re,Pr
)□Natural
convection
heat
transfer:Nu
f
(Gr,
Pr)□Mixed
heat
transfer:Nu
f
(Re,
Gr,
Pr)Process
experimental
data
according
to
above
rules
to
obtainthe
practical
correlations
that
can
reflect
the
heat
transfer.This
is
the
basic
rule
on
how
to
process
the
experiment
data.工程熱物理高等傳熱學(xué)
Advanced
Heat
TransferSimilarity
principle
gives
answers
to
the
following
questions:①
Similarityparameters
should
be
the
basis
for
arrangingties
included
in
similarityexperiment,
and
the
physicalparameter
shouldbemeasured.②
Experimental
results
should
be
processed
to
the
correlations
ofsimilarity
parameters.③
Experimental
results
can
be
applied
to
the
practical
conditionssimilar
to
the
experiment.工程熱物理高等傳熱學(xué)
Advanced
Heat
Transferf
f
f1.
Experimental
correlations
of
turbulence
flowin
pipe
(D-B),
heating
fluidNu
0.023
Re0.8
Prn,
cooling
fluid7.2
Experimental
correlations
of
laminar
forcedflow
in
pipe(Sieder-Tate)7.
Experimental
correlations
of
forced
convectionheat
transfer
in
internal
flow
Re
Pr1
3.
f
f
f
l
dNuf
1.86
w
工程熱物理高等傳熱學(xué)
Advanced
Heat
Transfer8.
Experimental
correlations
of
forced
convectionheat
transfer
in
external
flow1.
Laminar
flow
over
an
isothermal
pla
aminarflow,
Re<5×105)1/
2
1/
3Nux
0.332
Re
x
PrNum
0.664
Rel
1/
2
Pr1/
3Flow
across
single
cylinderFlow
across
tube
banks工程熱物理高等傳熱學(xué)
Advanced
Heat
Transfer9.
Experimental
correlations
of
naturalconvection
heat
transferExperimental
correlations
of
natural
convectionheat
transfer
in
infinite
spaceNu
C
Gr
Prn
C
RanExperimental
correlations
of
natural
convectionheat
transfer
in
enclosuresqHTw1Tw2工程熱物理高等傳熱學(xué)
Advanced
Heat
Transfer10.
Comprehensive
correlation:Nu
0.023Ref.fPrn
C
C
Cf
l
r
t
0.8p,
d0.8
0.40.4
0.60.2n
0.4,
h
f
u,
,
,
c
,
①
ρ,
power
is
0.8,
is
the
most
influencing
factor,
next
isλ②
u,power
is0.8:
1m/s→
1.5m/s,
h↑40%③
d↓,
h↑工程熱物理高等傳熱學(xué)
Advanced
Heat
TransferDevelopment
ofthe
cooling
technology
for
power
plants100MW
H2
cooled
generator
set300MW
H2-H2O
cooled
generator
setmaxpower<100MW<500MW<600MW>1000MWcooling
mediumAircoolingH2coolingH2O-H2coolingH2Ocooling工程熱物理Advanced
Heat
Transfer高等傳熱學(xué)medium
ρλ
ηcp1.090.0769881005143044174airH2H2O0.0239
2x10-60.167
0.96x10-6.
56.6x10-6Large
Thermal
power
air
cooling
units(direct
cooling
or
indirectcooling)200MW,300MW,600MWAreas
with
abundant
coal
and
deficient
water:Compared
with
water
cooling,
air
cooling
can
saveup
to
75%
water.Outline
of
the
National
Program
for
Long
and
Medium
Term
Scientificand
Technological
Development(2006-2020):
One
of
the
16
majornational
science
and
technology
ro
ects:
Large-scale
advanced
PWR
andhigh
temperature
gas
cooled
reactor
nuclear
power
plants工程熱物理高等傳熱學(xué)
Advanced
Heat
Transfer§1-2
erning
equations1.
Continuit
E
.Law
of
massconservationMethod:
control
volume
methodMass
into
control
volume
per
unit
time-
Mass
out
of
control
volume
per
unit
time+
Net
value
of
internal
mass
source
and
sink=
Mass
changing
rate
in
control
volume工程熱物理高等傳熱學(xué)
Advanced
Heat
Transfer1.3
Derivationx,intovolume:
udydzx+dx,
outofvolume:Net
value
intovolume:
u
u
xdx
dydz
u
dxdydz
x
u
v
w
dxdydz
x
y
zNet
value
of
allthe
directions:
dxdydzRate
of
mass
change
withtime:工程熱物理高等傳熱學(xué)
Advanced
Heat
TransferAssume
mass
source
and
sink
equal
zero
u
v
w
0
y
z
div
u
0
x
?
u
0
u
j
0j
x
u
u
v
w
0
x
v
w
y
z
x
y
z
工程熱物理高等傳熱學(xué)
Advanced
Heat
TransferD
d
i
v
u
0
?
u
0D
D
D1.4
Special
casessteady?
u
0pressible?
u
01.5
Other
coordinate
systems工程熱物理高等傳熱學(xué)
Advanced
Heat
Transfer2.
Momentum
Eqs.2.1
Law
of
momentum
conservation
(vector)Momentum
into
control
volume
along①i
direction
per
unit
time-
Momentum
out
of
control
volumealong
i
direction
per
unittime+
Momentum
changing
rate
along
i
direction
②=
Sum
of
forces
acting
on
the
fluid
ofcontrol
volume
along
idirection
③工程熱物理高等傳熱學(xué)Advanced
Heat
Transfer2.2
Derivationu
udydz
u
2
dydzx,
into
volume:x+dx,
out
ofvolume:
u2
u
d
x
d
y
d
z2
xdxdydz2Net
value
on
the
leftand
right
interfaces:
u
xNet
value
along
xdirection:
u
2
w
u
d
x
d
y
d
z
x
vu
y
z①:工程熱物理高等傳熱學(xué)
Advanced
Heat
TransferRate
of
momentum
changewith
time
along
x
direction:
u
dxdydz②
+
①:Acting
force:
u
u
u
v
u
w
u
dxdydz
Du
dxdydz
D
x
y
z
body
force
(gravity,
centrifugal
force,
electromagnetic
force)surface
force
(static
pressure,
viscous
stress)Assumption:body
force
at
x
direction
is
Fx.surface
stress
τ
is posed
intothree
components.static
pressure
p
is
perpendicular
toacting
surface.工程熱物理高等傳熱學(xué)Advanced
Heat
TransferFx
dxdydz
p
pdxdydz
xx
p
dydzxx
xxyxyx
xdy
dxdz
dxdz
zxzx
yx
ydz
dxdy
zx
z
dxdy
x
F
yx
p
xx
x
x
zx
z
d
x
d
y
d
z
y③:
工程熱物理高等傳熱學(xué)
Advanced
Heat
TransferxD
Du
F
yx
p
xx
zx
x
x
y
zFor
Newtonian
fluid
(there
is
a
simple
linear
relationship
betweenstress
and
strain)xyy
x
u
v
ujijj
i
u
i
x
x
x
u
u
D
Du
F
p
u
x
x
x
y
y
z
z
1
u
v
w
3
x
x
y
z
i
Dui
F
p
ui
1
u
j
jjijDix
x
x
3
x
x
工程熱物理高等傳熱學(xué)
Advanced
Heat
Transfer2.3
Special
casepressi f
uid,
constant
viscosityjiDuD
2
u
p i
Fi
i
x
x
21823,
Navier1845,
Stokes2.4
Other
coordinate
systems工程熱物理高等傳熱學(xué)
Advanced
Heat
Transfer3.
Energy
Eq.law
ofthermodynamicsAssumption:Nointernal
heat
source;Neglect
the
change
ofkinetic
energy
andpotential
energy;
neglectradiation
heattransfer3.3
Derivationd-Q?conv
d-Qc.,-ond
d?-W
d?-E2①
②
④
③Total
energy
of
fluid
per
unit
mass:e
U
1
u
2
v
2
w
2
electromagnetic工程熱物理高等傳熱學(xué)
Advanced
Heat
Transfer①
u
e
dydzx,
into
control
volume:
uedydz
ue
dxdydz
xx+dx,
outofcontrol
volume:Net
value:
ue
dxdydz
xNet
value
of
all
directions:
ue
ve
we
dxdydzconvdQ
x
y
z
dxdydz
u
j
e
j
x工程熱物理高等傳熱學(xué)
Advanced
Heat
Transfer②q
x
dydz
q
qx
xdx
dydz
x
qx,
into
control
volume:x+dx,
out
ofcontrolvolume:Net
value:dxdydzx
xFourier’s
law
of
heat
conduction:Net
value
of
all
directions:
t
dxdydz
x
x
conddQ
t
t
t
dxdydz
x
x
y
y
z
z
t
dxdydzjj
x
x工程熱物理高等傳熱學(xué)
Advanced
Heat
TransferdE
e
dxdydz③
Rate
of
total
energychange
with
time:
u
j
ejjj
dxdydz
x
x
x
t
dxdydz
dW
e
dxdydz
dxdydzDe
D
dxdydz
e
u
j
x
jAjj
t
dxdydz
dW
x
x工程熱物理④高等傳熱學(xué)
Advanced
Heat
Transferysis
of
dWNet
workbetween
fluid
in
control
volume
andsurroundings
includes
the
work
done
by
bodyforce
and
surface
stress.dW
dW
S
+
dW
VdW
V
Fx
u
F v
Fz
w
dxdydz工程熱物理高等傳熱學(xué)
Advanced
Heat
Transferysis
of
dWSLeft
wall: Right
wall:xx
p
udydz
p
xx
p
dx u
dx
dydz
u
xx
x
x
v
x
xy
vdydzdx
v
x
dx
d
ydz
xy
x
xz
wdzdyxzdx
w
w
dx
dydz
xz
x
x
The
stress
and
velocityThe
stress
and
velocityare
in
the
oppositedirection,
negative
workare
in
the
same
direction,positive
work工程熱物理高等傳熱學(xué)
Advanced
Heat
TransferTaylor
expansion
he ight
wa
:xx
p
u
p
u
xx
xdx
dydz
xy
v
x
xy
v
dx
dydz
xz
w
xz
w
dx
dydz
x
Net
value
of
leftand
rightwall:
w
xxp
u
xy
vxz
x
x
x
dxdydz工程熱物理高等傳熱學(xué)Advanced
Heat
TransferNet
value
of
all
walls:
p
u
xy
v
w
xz
dxdydz
x
x
xx
xyxyz
u
w
yy
p
vdxdydz
y
y
y
p
w
u
zz
zyv
zx
z
z
zdxdydz工程熱物理高等傳熱學(xué)
Advanced
Heat
TransferdW:
u
u
yx
u
xx
x
yzx
zdW
dxdydz
yydxdydz
v
v
vxy
xzy
z
y
yzw
xz
w
zzw
x
z
dxdydzB
pu
pv
pw
dxdydz
x
y
z
Fx
u
F
y
v
Fz
w
dxdydz工程熱物理高等傳熱學(xué)Momentum
Eq.Advanced
Heat
Transfer
yx
p
xx
zxxD
Du
Fudxdydzudxdydz
?
x
x
y
z
p
xy
yy
zy
y
zyD
Dv
Fvdxdydzvdxdydz
?
y
x
p
xz
z
x
yz
y
zz
zzwdxdydz
?
Dw
FDAdding
to
get:wdxdydz2u
D
1
u2
v
2
wdxdydz
dxdydz
xzv
x
zx
y
zD
2
xy
yy
zydxdydz
w
yz
zz
dxdydz
x
y
z
x
y
z
x
y
z
u
p
v
p
w
p
dxdydz
F
u
F v
F
w
dxdydzC
x
y
z
工程熱物理高等傳熱學(xué)
Advanced
Heat
TransferB
CdW
D
1
u
2
v
2
w
2
dxdydz
yxzxyy
u
x
D
2
u
u
v
v
x
y
xx
xy
y
z
v
z
zy
dxdydz
xz
w
w
w
yz
x
yzz
z
p
u
v
w
dxdydz
x
y
z
dW
D
1
u
2
v
2
w
2
dxddz
d
x
d
dz
D
2
u
v
w
p
x
y
z
dxdydzD
D
De
dxdydz
t
dxdydz
dW
x
xAjj工程熱物理高等傳熱學(xué)
Advanced
Heat
TransferPutDequation
into
A
equation:
DU
t
p
u
v
w
internal
energy
expression
ofenergy
equationD
yz
Φ:
u
2
v
2
w
2
2
x
2
y
2
z
Put
the
expression
of
Newtonian
fluid
viscous
stress
into
u
v
2
w
2
u
w
2
v
y
x
z
x
z
y
22
u
0
v
w
3
x
y
z
Physicalinterpretationviscous
dissipation
function,
the
work
done
tothe
fluid
in
control
volume
by
viscous
stress
perunit
time
which
is
converted
into
thermal
energyof
Φ:
irreversibly.
工程熱物理高等傳熱學(xué)
Advanced
Heat
TransferEnerg equation
inenthalpy:h
U
p
2DD
DDh
DU
1
Dp
p
DpD
0p
D
0D
D
u
j
x
jD
p
u
j
x
jj
p
u
jD
x
2
DU
p
D
DUp
D
D
D
DD
jj
x
x
t
DUD
D
D
D
Dh
1
Dp
Dh
Dp
Energy
equation
expressed
by
enthalpyjj
Dh
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 代步租車活動(dòng)方案
- 代表接待活動(dòng)方案
- 以舊換新活動(dòng)方案
- 北京市密云區(qū)2023-2024學(xué)年五年級(jí)下學(xué)期數(shù)學(xué)期末檢測卷(含答案)
- 仲裁三送一檢活動(dòng)方案
- QBT-制鹽工業(yè)檢測方法 硒的測定編制說明
- 企業(yè)修舊利廢活動(dòng)方案
- 企業(yè)公司年禮活動(dòng)方案
- 企業(yè)創(chuàng)優(yōu)奪牌活動(dòng)方案
- 企業(yè)雙愛雙評(píng)活動(dòng)方案
- 哈爾濱市第九中學(xué)校2024-2025學(xué)年高二下學(xué)期期中地理試卷
- 淮安監(jiān)理員試題及答案
- 小升初語文真題專項(xiàng)訓(xùn)練專題6+文學(xué)常識(shí)與名著閱讀(有解析)
- 第4章 帶傳動(dòng)設(shè)計(jì) (1)課件
- 8-馬工程《藝術(shù)學(xué)概論》課件-第八章(2019.4.2)【已改格式】.課件電子教案
- 人教版七年級(jí)下冊英語單詞辨音訓(xùn)練題(一)
- 與總包等的協(xié)調(diào)配合措施
- 在深化糾正“四風(fēng)”和提高工作效率專題研討會(huì)上的發(fā)言
- 小學(xué)音樂 花城版 二年級(jí)《稻草里的火雞》課件
- 物質(zhì)安全數(shù)據(jù)表(MSDS)84消毒液
- 建筑玻璃隔熱膜工程技術(shù)規(guī)程
評(píng)論
0/150
提交評(píng)論