




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數學模擬試卷考生須知:1全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1在一個數列中,如果,都有(為常數),那么這個數列叫做等積數列,叫做這個數列的公積.已知數列是等積數列,且,公積為,則( )ABCD2如圖,四邊形為平行四邊形,為中點,為的三
2、等分點(靠近)若,則的值為( )ABCD3某醫院擬派2名內科醫生、3名外科醫生和3名護士共8人組成兩個醫療分隊,平均分到甲、乙兩個村進行義務巡診,其中每個分隊都必須有內科醫生、外科醫生和護士,則不同的分配方案有A72種B36種C24種D18種4定義,已知函數,則函數的最小值為( )ABCD5已知集合,若,則( )A4B4C8D86已知函數,若,則a的取值范圍為( )ABCD7已知,則的大小關系為( )ABCD8的展開式中有理項有( )A項B項C項D項9已知f(x),g(x)都是偶函數,且在0,+)上單調遞增,設函數F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a0,則( )A
3、F(-a)F(a)且F(1+a)F(1-a)BF(-a)F(a)且F(1+a)F(1-a)CF(-a)F(a)且F(1+a)F(1-a)DF(-a)F(a)且F(1+a)F(1-a)10設復數z,則|z|()AB CD11已知某幾何體的三視圖如圖所示,則該幾何體的體積是( )AB64CD3212中,點在邊上,平分,若,則( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13銳角中,角,所對的邊分別為,若,則的取值范圍是_.14某部隊在訓練之余,由同一場地訓練的甲乙丙三隊各出三人,組成小方陣開展游戲,則來自同一隊的戰士既不在同一行,也不在同一列的概率為_.15已知數列與均為等差數列(
4、),且,則_16變量滿足約束條件,則目標函數的最大值是_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)某社區服務中心計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶5元,售價每瓶7元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:攝氏度)有關.如果最高氣溫不低于25,需求量為600瓶;如果最高氣溫位于區間,需求量為500瓶;如果最高氣溫低于20,需求量為300瓶.為了確定六月份的訂購計劃,統計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:最高氣溫天數414362763以最高氣溫位于各區間的頻率代替
5、最高氣溫位于該區間的概率.(1)求六月份這種酸奶一天的需求量(單位:瓶)的分布列;(2)設六月份一天銷售這種酸奶的利潤為(單位:元),當六月份這種酸奶一天的進貨量為(單位:瓶)時,的數學期望的取值范圍?18(12分)為了加強環保知識的宣傳,某學校組織了垃圾分類知識竟賽活動.活動設置了四個箱子,分別寫有“廚余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干張,每張卡片上寫有一種垃圾的名稱.每位參賽選手從所有卡片中隨機抽取張,按照自己的判斷將每張卡片放入對應的箱子中.按規則,每正確投放一張卡片得分,投放錯誤得分.比如將寫有“廢電池”的卡片放入寫有“有害垃圾”的箱子,得分,放入其它箱子
6、,得分.從所有參賽選手中隨機抽取人,將他們的得分按照、分組,繪成頻率分布直方圖如圖:(1)分別求出所抽取的人中得分落在組和內的人數;(2)從所抽取的人中得分落在組的選手中隨機選取名選手,以表示這名選手中得分不超過分的人數,求的分布列和數學期望.19(12分)設數列的前列項和為,已知.(1)求數列的通項公式;(2)求證:.20(12分)已知函數.(1)求不等式的解集;(2)若對任意恒成立,求的取值范圍.21(12分)如圖,在矩形中,點分別是線段的中點,分別將沿折起,沿折起,使得重合于點,連結.()求證:平面平面;()求直線與平面所成角的正弦值.22(10分)已知 (1)若 ,且函數 在區間 上單
7、調遞增,求實數a的范圍;(2)若函數有兩個極值點 ,且存在 滿足 ,令函數 ,試判斷 零點的個數并證明參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】計算出的值,推導出,再由,結合數列的周期性可求得數列的前項和.【詳解】由題意可知,則對任意的,則,由,得,因此,.故選:B.【點睛】本題考查數列求和,考查了數列的新定義,推導出數列的周期性是解答的關鍵,考查推理能力與計算能力,屬于中等題.2D【解析】使用不同方法用表示出,結合平面向量的基本定理列出方程解出【詳解】解:,又解得,所以故選:D【點睛】本題考查了平面向量的基本定理
8、及其意義,屬于基礎題3B【解析】根據條件2名內科醫生,每個村一名,3名外科醫生和3名護士,平均分成兩組,則分1名外科,2名護士和2名外科醫生和1名護士,根據排列組合進行計算即可【詳解】2名內科醫生,每個村一名,有2種方法,3名外科醫生和3名護士,平均分成兩組,要求外科醫生和護士都有,則分1名外科,2名護士和2名外科醫生和1名護士,若甲村有1外科,2名護士,則有C31C32=33=9,其余的分到乙村,若甲村有2外科,1名護士,則有C32C31=33=9,其余的分到乙村,則總共的分配方案為2(9+9)=218=36種,故選:B.【點睛】本題主要考查了分組分配問題,解決這類問題的關鍵是先分組再分配,
9、屬于常考題型.4A【解析】根據分段函數的定義得,則,再根據基本不等式構造出相應的所需的形式,可求得函數的最小值.【詳解】依題意得,則,(當且僅當,即時“”成立.此時,,的最小值為,故選:A.【點睛】本題考查求分段函數的最值,關鍵在于根據分段函數的定義得出,再由基本不等式求得最值,屬于中檔題.5B【解析】根據交集的定義,可知,代入計算即可求出.【詳解】由,可知,又因為,所以時,解得.故選:B.【點睛】本題考查交集的概念,屬于基礎題.6C【解析】求出函數定義域,在定義域內確定函數的單調性,利用單調性解不等式【詳解】由得,在時,是增函數,是增函數,是增函數,是增函數,由得,解得故選:C.【點睛】本題
10、考查函數的單調性,考查解函數不等式,解題關鍵是確定函數的單調性,解題時可先確定函數定義域,在定義域內求解7D【解析】由指數函數的圖像與性質易得最小,利用作差法,結合對數換底公式及基本不等式的性質即可比較和的大小關系,進而得解.【詳解】根據指數函數的圖像與性質可知,由對數函數的圖像與性質可知,所以最小;而由對數換底公式化簡可得由基本不等式可知,代入上式可得所以,綜上可知,故選:D.【點睛】本題考查了指數式與對數式的化簡變形,對數換底公式及基本不等式的簡單應用,作差法比較大小,屬于中檔題.8B【解析】由二項展開式定理求出通項,求出的指數為整數時的個數,即可求解.【詳解】,當,時,為有理項,共項.故
11、選:B.【點睛】本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關鍵,屬于基礎題.9A【解析】試題分析:由題意得,F(x)=2g(1-x),f(x)g(1-x)2f(x),f(x)g(1-x),F(-a)=2g(1+a),f(a)=f(-a)g(1+a)2f(-a),f(a)=f(-a)g(1+a),F(a)=2g(1-a),f(a)g(1-a)2f(a),f(a)0,(a+1)2-(a-1)2=4a0,|1+a|a-1|g(1+a)g(1-a),若f(a)g(1+a):F(-a)=2g(1+a),F(a)=2g(1-a),F(-a)F(a),若g(1-a)f(a)g(1+a)
12、:F(-a)=2f(-a)=2f(a),F(a)=2g(1-a),F(-a)F(a),若f(a)g(1-a):F(-a)=2f(-a)=2f(a),F(a)=2f(a),F(-a)=F(a),綜上可知F(-a)F(a),同理可知F(1+a)F(1-a),故選A.考點:1.函數的性質;2.分類討論的數學思想.【思路點睛】本題在在解題過程中抓住偶函數的性質,避免了由于單調性不同導致1-a與1+a大小不明確的討論,從而使解題過程得以優化,另外,不要忘記定義域,如果要研究奇函數或者偶函數的值域、最值、單調性等問題,通常先在原點一側的區間(對奇(偶)函數而言)或某一周期內(對周期函數而言)考慮,然后推廣
13、到整個定義域上.10D【解析】先用復數的除法運算將復數化簡,然后用模長公式求模長.【詳解】解:z,則|z|.故選:D.【點睛】本題考查復數的基本概念和基本運算,屬于基礎題.11A【解析】根據三視圖,還原空間幾何體,即可得該幾何體的體積.【詳解】由該幾何體的三視圖,還原空間幾何體如下圖所示:可知該幾何體是底面在左側的四棱錐,其底面是邊長為4的正方形,高為4,故.故選:A【點睛】本題考查了三視圖的簡單應用,由三視圖還原空間幾何體,棱錐體積的求法,屬于基礎題.12B【解析】由平分,根據三角形內角平分線定理可得,再根據平面向量的加減法運算即得答案.【詳解】平分,根據三角形內角平分線定理可得,又,.故選
14、:.【點睛】本題主要考查平面向量的線性運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】由余弦定理,正弦定理得出,從而得出,推出的范圍,由余弦函數的性質得出的范圍,再利用二倍角公式化簡,即可得出答案.【詳解】由題意得由正弦定理得化簡得又為銳角三角形,則,.故答案為【點睛】本題主要考查了正弦定理和余弦定理的應用,屬于中檔題.14【解析】分兩步進行:首先,先排第一行,再排第二行,最后排第三行;其次,對每一行選人;最后,利用計算出概率即可.【詳解】首先,第一行隊伍的排法有種;第二行隊伍的排法有2種;第三行隊伍的排法有1種;然后,第一行的每個位置的人員安排有種;第二行的每個
15、位置的人員安排有種;第三行的每個位置的人員安排有種.所以來自同一隊的戰士既不在同一行,也不在同一列的概率.故答案為:.【點睛】本題考查了分步計數原理,排列與組合知識,考查了轉化能力,屬于中檔題.1520【解析】設等差數列的公差為,由數列為等差數列,且,根據等差中項的性質可得,解方程求出公差,代入等差數列的通項公式即可求解.【詳解】設等差數列的公差為,由數列為等差數列知,因為,所以,解得,所以數列的通項公式為,所以.故答案為:【點睛】本題考查等差數列的概念及其通項公式和等差中項;考查運算求解能力;等差中項的運用是求解本題的關鍵;屬于基礎題.165【解析】分析:畫出可行域,平移直線,當直線經過時,
16、可得有最大值.詳解: 畫出束條件表示的可行性,如圖,由可得,可得,目標函數變形為,平移直線,當直線經過時,可得有最大值,故答案為.點睛:本題主要考查線性規劃中利用可行域求目標函數的最值,屬簡單題.求目標函數最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數對應的最優解對應點(在可行域內平移變形后的目標函數,最先通過或最后通過的定點就是最優解);(3)將最優解坐標代入目標函數求出最值.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)見解析;(2)【解析】(1)X的可能取值為300,500,600,結合題意及表格數據計算對
17、應概率,即得解;(2)由題意得,分,及,分別得到y與n的函數關系式,得到對應的分布列,分析即得解.【詳解】(1)由題意:X的可能取值為300,500,600 故:六月份這種酸奶一天的需求量(單位:瓶)的分布列為300500600(2)由題意得.1.當時,利潤此時利潤的分布列為.2.時,利潤此時利潤的分布列為.綜上的數學期望的取值范圍是.【點睛】本題考查了函數與概率統計綜合,考查了學生綜合分析,數據處理,轉化劃歸,數學運算的能力,屬于中檔題.18(1)所抽取的人中得分落在組和內的人數分別為人、人;(2)分布列見解析,.【解析】(1)將分別乘以區間、對應的矩形面積可得出結果;(2)由題可知,隨機變
18、量的可能取值為、,利用超幾何分布概率公式計算出隨機變量在不同取值下的概率,可得出隨機變量的分布列,并由此計算出隨機變量的數學期望值.【詳解】(1)由題意知,所抽取的人中得分落在組的人數有(人),得分落在組的人數有(人).因此,所抽取的人中得分落在組的人數有人,得分落在組的人數有人;(2)由題意可知,隨機變量的所有可能取值為、,所以,隨機變量的分布列為:所以,隨機變量的期望為.【點睛】本題考查利用頻率分布直方圖計算頻數,同時也考查了離散型隨機變量分布列與數學期望的求解,考查計算能力,屬于基礎題.19(1)(2)證明見解析【解析】(1)由已知可得,構造等比數列即可求出通項公式;(2)當時,由,可求
19、,時,由,可證,驗證時,不等式也成立,即可得證.【詳解】(1)由可得,即,所以,解得,(2)當時,,當時,綜上,由可得遞增,時;所以,綜上:故.【點睛】本題主要考查了遞推數列求通項公式,利用放縮法證明不等式,涉及等比數列的求和公式,屬于難題.20 (1);(2).【解析】(1)通過討論的范圍,分為,三種情形,分別求出不等式的解集即可;(2)通過分離參數思想問題轉化為,根據絕對值不等式的性質求出最值即可得到的范圍.【詳解】(1)當時,原不等式等價于,解得,所以,當時,原不等式等價于,解得,所以此時不等式無解,當時,原不等式等價于,解得,所以 綜上所述,不等式解集為. (2)由,得,當時,恒成立,所以; 當時,. 因為當且僅當即或時,等號成立,所以;綜上的取值范圍是.【點睛】本題考查了解絕對值不等式問題,考查絕對值不等式的性質以及分類討論思想,轉化思
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 藥品采購安全管理制度
- 藥店人員培訓管理制度
- 藥店總部倉庫管理制度
- 設備停用閑置管理制度
- 設計部打印紙管理制度
- 診室電子處方管理制度
- 診所污水試劑管理制度
- 試劑耗材報廢管理制度
- 財務資金對賬管理制度
- 財政存款賬戶管理制度
- 公司加減分管理制度
- 中小學科學教育問題試題及答案教師資格筆試
- DB51-T 3267-2025 公路應急搶通保通技術規程
- 科技合作居間協議
- 2025至2030年中國人工智能生成內容(AIGC)行業投資規劃及前景預測報告
- 2025年廣東省地理初中學業水平模擬練習卷(含答案)
- 地理會考試卷原題及答案
- 湖南新華書店集團招聘考試真題2024
- 心率測定-教學設計-八年級體育健康教育
- 2025年ps cs5操作試題及答案
- 醫美轉正工作總結
評論
0/150
提交評論