導(dǎo)數(shù)知識(shí)點(diǎn)總結(jié)_第1頁(yè)
導(dǎo)數(shù)知識(shí)點(diǎn)總結(jié)_第2頁(yè)
導(dǎo)數(shù)知識(shí)點(diǎn)總結(jié)_第3頁(yè)
導(dǎo)數(shù)知識(shí)點(diǎn)總結(jié)_第4頁(yè)
導(dǎo)數(shù)知識(shí)點(diǎn)總結(jié)_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、導(dǎo)數(shù)知識(shí)要點(diǎn)導(dǎo) 數(shù)導(dǎo)數(shù)的概念導(dǎo)數(shù)的運(yùn)算導(dǎo)數(shù)的應(yīng)用導(dǎo)數(shù)的幾何意義、物理意義函數(shù)的單調(diào)性函數(shù)的極值函數(shù)的最值常見函數(shù)的導(dǎo)數(shù)導(dǎo)數(shù)的運(yùn)算法則1. 導(dǎo)數(shù)(導(dǎo)函數(shù)的簡(jiǎn)稱)的定義:設(shè)是函數(shù)定義域的一點(diǎn),如果自變量在處有增量,則函數(shù)值也引起相應(yīng)的增量;比值稱為函數(shù)在點(diǎn)到之間的平均變化率;如果極限存在,則稱函數(shù)在點(diǎn)處可導(dǎo),并把這個(gè)極限叫做在處的導(dǎo)數(shù),記作或,即=.注:是增量,我們也稱為“改變量”,因?yàn)榭烧韶?fù),但不為零.已知函數(shù)定義域?yàn)椋亩x域?yàn)椋瑒t與關(guān)系為.2. 函數(shù)在點(diǎn)處連續(xù)與點(diǎn)處可導(dǎo)的關(guān)系:函數(shù)在點(diǎn)處連續(xù)是在點(diǎn)處可導(dǎo)的必要不充分條件.可以證明,如果在點(diǎn)處可導(dǎo),那么點(diǎn)處連續(xù).事實(shí)上,令,則相當(dāng)于.于是如

2、果點(diǎn)處連續(xù),那么在點(diǎn)處可導(dǎo),是不成立的.例:在點(diǎn)處連續(xù),但在點(diǎn)處不可導(dǎo),因?yàn)椋?dāng)0時(shí),;當(dāng)0時(shí),故不存在.注:可導(dǎo)的奇函數(shù)函數(shù)其導(dǎo)函數(shù)為偶函數(shù).可導(dǎo)的偶函數(shù)函數(shù)其導(dǎo)函數(shù)為奇函數(shù).3. 導(dǎo)數(shù)的幾何意義:函數(shù)在點(diǎn)處的導(dǎo)數(shù)的幾何意義就是曲線在點(diǎn)處的切線的斜率,也就是說(shuō),曲線在點(diǎn)P處的切線的斜率是,切線方程為4、幾種常見的函數(shù)導(dǎo)數(shù):(為常數(shù)) () 5. 求導(dǎo)數(shù)的四則運(yùn)算法則:(為常數(shù))注:必須是可導(dǎo)函數(shù).若兩個(gè)函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個(gè)函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo).例如:設(shè),則在處均不可導(dǎo),但它們和在處均可導(dǎo).6. 復(fù)合函數(shù)的求導(dǎo)法則:或復(fù)合函數(shù)的求導(dǎo)法則可推廣

3、到多個(gè)中間變量的情形.7. 函數(shù)單調(diào)性:函數(shù)單調(diào)性的判定方法:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果0,則為增函數(shù);如果0,則為減函數(shù).常數(shù)的判定方法;如果函數(shù)在區(qū)間內(nèi)恒有=0,則為常數(shù).注:是f(x)遞增的充分條件,但不是必要條件,如在上并不是都有,有一個(gè)點(diǎn)例外即x=0時(shí)f(x) = 0,同樣是f(x)遞減的充分非必要條件.一般地,如果f(x)在某區(qū)間內(nèi)有限個(gè)點(diǎn)處為零,在其余各點(diǎn)均為正(或負(fù)),那么f(x)在該區(qū)間上仍舊是單調(diào)增加(或單調(diào)減少)的.8. 極值的判別方法:(極值是在附近所有的點(diǎn),都有,則是函數(shù)的極大值,極小值同理)當(dāng)函數(shù)在點(diǎn)處連續(xù)時(shí),如果在附近的左側(cè)0,右側(cè)0,那么是極大值;如果在附近的

4、左側(cè)0,右側(cè)0,那么是極小值.也就是說(shuō)是極值點(diǎn)的充分條件是點(diǎn)兩側(cè)導(dǎo)數(shù)異號(hào),而不是=0. 此外,函數(shù)不可導(dǎo)的點(diǎn)也可能是函數(shù)的極值點(diǎn).當(dāng)然,極值是一個(gè)局部概念,極值點(diǎn)的大小關(guān)系是不確定的,即有可能極大值比極小值小(函數(shù)在某一點(diǎn)附近的點(diǎn)不同).注: 若點(diǎn)是可導(dǎo)函數(shù)的極值點(diǎn),則=0. 但反過來(lái)不一定成立. 對(duì)于可導(dǎo)函數(shù),其一點(diǎn)是極值點(diǎn)的必要條件是若函數(shù)在該點(diǎn)可導(dǎo),則導(dǎo)數(shù)值為零.例如:函數(shù),使=0,但不是極值點(diǎn).例如:函數(shù),在點(diǎn)處不可導(dǎo),但點(diǎn)是函數(shù)的極小值點(diǎn).9. 極值與最值的區(qū)別:極值是在局部對(duì)函數(shù)值進(jìn)行比較,最值是在整體區(qū)間上對(duì)函數(shù)值進(jìn)行比較.注:函數(shù)的極值點(diǎn)一定有意義.導(dǎo)數(shù)練習(xí)一、選擇題設(shè)函數(shù)在上

5、可導(dǎo),其導(dǎo)函數(shù),且函數(shù)在處取得極小值,則函數(shù)的圖象可能是設(shè)a>0,b>0,e是自然對(duì)數(shù)的底數(shù)()A若ea+2a=eb+3b,則a>b B若ea+2a=eb+3b,則a<b C若ea-2a=eb-3b,則a>b D若ea-2a=eb-3b,則a<b設(shè)函數(shù)f(x)=+lnx 則()Ax=為f(x)的極大值點(diǎn)B x=為f(x)的極小值點(diǎn) Cx=2為 f(x)的極大值點(diǎn)Dx=2為 f(x)的極小值點(diǎn)設(shè)函數(shù),.若的圖象與的圖象有且僅有兩個(gè)不同的公共點(diǎn),則下列判斷正確的是()ABCD函數(shù)y=x2x的單調(diào)遞減區(qū)間為()A(1,1B(0,1C1,+)D(0,+)已知,且.現(xiàn)

6、給出如下結(jié)論:;.其中正確結(jié)論的序號(hào)是()ABCD已知函數(shù);則的圖像大致為 設(shè)a>0,b>0.()A若,則a>bB若,則a<bC若,則a>bD若,則a<b設(shè)函數(shù)在R上可導(dǎo),其導(dǎo)函數(shù)為,且函數(shù)的圖像如題(8)圖所示,則下列結(jié)論中一定成立的是()A函數(shù)有極大值和極小值B函數(shù)有極大值和極小值C函數(shù)有極大值和極小值D函數(shù)有極大值和極小值設(shè)函數(shù),則()A為的極大值點(diǎn)B為的極小值點(diǎn) C為的極大值點(diǎn)D為的極小值點(diǎn)設(shè)且,則“函數(shù)在上是減函數(shù) ”,是“函數(shù)在上是增函數(shù)”的()A充分不必要條件B必要不充分條件 C充分必要條件D既不充分也不必要條件已知函數(shù)的圖像與軸恰有兩個(gè)公共點(diǎn),則()A或2B或3C或1D或1二、填空題曲線在點(diǎn)(1,1)處的切線方程為_曲線在點(diǎn)處的切線方程為_.三、解答題已知函數(shù)在處取得極值為(1)求a、b的值;(2)若有極大值28,求在上的最大值.已知aR,函數(shù)(1)求f(x)的單調(diào)區(qū)間(2)證明:當(dāng)0x1時(shí),f(x)+ >0.已知函數(shù)(I)求函數(shù)的單調(diào)區(qū)間; (II)若函數(shù)在區(qū)間內(nèi)恰有

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論