




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、廣東省佛山市2020年九年級上學期數學期末考試試卷B卷姓名:班級:成績:一、單選題(共10題;共20分)1. (2分)(2019 鄒平模擬)如圖,由4個同樣大小的正方體擺成的幾何體,將正方體移走后,所得幾何體()第7頁共16頁A .主視圖不變,左視圖改變B .主視圖不變,左視圖不變C .主視圖改變,左視圖不變D .主視圖改變,左視圖改變2. (2分)兩個等圓。01和。02相交于A, B兩點,且。01經過點02 ,則四邊形01A02B是()4.A .A .兩個鄰邊不相等的平行四邊形B .菱形C .矩形D .正方形3. (2分)某機械廠一月份生產零件50萬個,三月份生產零件72萬個,則該機械廠二、
2、三月份生產零件數 量的月平均增長率為()A.2%B . 5%C . 10%D . 20%35 53X (2分)(2019九上溫州月考)己知3x=5y,則丁二()_5c .3_3D .55. (2分)一元二次方程W-4i + 4 = 0的根的情況是()A .有兩個不相等的實數根B .有兩個相等的實數根C .無實數根D .無法確定6. (2分)(2016九上簡陽期末)如圖,已知AABC中,AB=AC=5, BC=8.則cosB的值是()B . 0.8C . 0.6D . 0. 6257. (2分)(2019九上越城月考)如圖,AB,CD都垂直于x軸,垂足分別為B, D,若A (6, 3), C (
3、2, 1),則三角形0CD與四邊形ABCD的面積比為()A . 1: 2B . 1: 3C . 1: 4D . 1: 858. (2分)反比例函數= 一天的圖象位于()A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限9. (2分)已知線段AB及AB上一點P,當點P滿足下列哪一種關系時,點P為AB的黃金分割點:ji? . 6T .四 4TAP2:ABPB: H =: m =:期=F ; AP= .其中正確的是()A . ©©B . ®C .D . ©©10. (2分)(2017九上柳江期中)若將拋物線尸x2向右平移2個單位
4、,再向上平移3個單位,則所得拋 物線的表達式為()A . y= (x+2) 2+3B . y= (x - 2) 2+3C . y= (x+2 )2-3D . y= (x-2) 2-3二、填空題(共6題;共6分)11. (1分)若關于X的一元二次方程(a+3)x2+x+a2-9=0的一個解是x=0,貝a的值為12. (1分)一個樣本有50個數據,分成三個組.已知第一、二組數據頻率和為a,第二、三組數據頻率和 為b,則第二組的頻率為 .13. (1 分)(2019 寧波)如圖,RtZABC 中,NC=90° , AC= 12,點 D 在邊 BC 上,CD=5, BD=13,點 P 是線段
5、 AD上一動點,當半徑為6的OP與AABC的一邊相切時,AP的長為.14. (1分)(2016八上鞍山期末)反比例函數的圖象經過點P (-1, 3),則此反比例函數的解析式為15. (1分)(2018 衢州模擬)兩幢大樓的部分截而及相關數據如圖,小明在甲樓A處透過窗戶E發現乙樓F處出現火災,此時A,E,F在同一直線上.跑到一樓時,消防員正在進行噴水火火,水流路線呈拋物線,在L 2m高的D處噴出,水流正好經過E,F.若點B和點E、點C和F的離地高度分別相同,現消防員將水流拋物線向上平移 0. 4m,再向左后退了 m恰好把水噴到F處進行滅火.A單位:斷16. (1分)如圖,D、E分別是等邊三角形A
6、BC的兩邊AB、AC上的點,且AD=CE, BE, DC相交于點P,則NBPD 的度數為.三、解答題(共9題;共88分)17. (5 分)(2016 自貢)計算:()2-1+ (sin600 - 1) 0 - 2cos30° + 我-118. (6分)(1)甲、乙、丙、丁四人做傳球游戲:第一次由甲將球隨機傳給乙、丙、丁中的某一人,從第 二次起,每一次都由持球者將球再隨機傳給其他三人中的某一人.(1)求第二次傳球后球回到甲手里的概率.(請用“畫樹狀圖”或“列表”等方式給出分析過程)(2)如果甲跟另外n (n22)個人做(1)中同樣的游戲,那么,第三次傳球后球回到甲手里的概率是19. (
7、10分)(2018九上豐臺期末)如圖,45是。0的直徑,點C是方的中點,連接并延長至 OE 2點。,使CDAC,點E是05上一點,且西=5 , CE的延長線交DB的延長線于點尸,JF交 。于點H ,連接BH.(1)求證:5。是。0的切線;(2)當03=2時,求BH的長.20. (6分)(2018 港云模擬)近年來,共享單車服務的推出(如圖1),極大的方便了城市公民綠色出行, 圖2是某品牌某型號單車的車架新投放時的示意圖(車輪半徑約為30C/J),其中BCU直線1,CE = 54rni .生)(參考數據:$m71t0.95 , co$71 飛 0.33;, 171 飛 2.90)(1)求單車車座
8、E到地面的高度;(結果精確到(2)根據經驗,當車座E到CB的距離調整至等于人體胯高(腿長)的0*85時,坐崎比較舒適-小明的胯 高為70cm,現將車座E調整至座椅舒適高度位置E, ,求EE的長(結果精確到0出)21. (10分)(2018九上華安期末)如圖,已知反比例函數的圖象與一次函數>=>+的圖象交(3)直接寫出一次函數值大于反比例函數值的自變量x的取值范用.22. (10分)(2019八下樂清月考)某商店代銷一種智能學習機,促銷廣告顯示“如果購買不超過40臺學 習機,則每臺售價800元,如果超出40臺,則每超出1分,每臺售價將均減少5元”,該學習機的進貨價與進貨 數量關系如圖
9、所示:設該商店購進并銷售學習機工臺。(假設進貨數量與你出數量相等)70060050x(臺)學習燈數量(1)當x>40時,用含x的代數式表示每臺學習機的售價:(2)當該商店一次性購進并銷售學習機60臺時,每臺學習機可以獲利多少元?(3)若該商店在一次銷售中獲利4800元,則該商店可能購進并銷售學習機多少臺?23. (15分)已知拋物線尸x2+bx+c經過A ( -1, 0), B (3, 0)兩點,與y釉相交于點C,該拋物線的頂點 為點D(1)求該拋物線的解析式及點D的坐標。(2)連接AC, CD, BD, BC,設AOC, BOC, ZBCD的面積分別為SL S2和S3,用等式表示SI,
10、 S2, S3之間的數 量關系,并說明理由(3)假設存在,設點M的坐標為(m, 0),表示出MA的長,根據MNBC,得到比例式求出AN,根據AMNs&CM, 得到比例式求出m,得到點M的坐標,求出BC的解析式,根據MNBC,設直線MN的解析式,求解即可24. (11分)(2016九上廣饒期中)如圖,已知拋物線y=x2- (m+3) x+9的頂點C在x軸正半軸上,一次 函數尸x+3與拋物線交于A、B兩點,與x、y軸交于D、E兩點.求m的值.(2)求A、B兩點的坐標.(3)點P (a, b) ( -3<a<l)是拋物線上一點,當APAB的面積是aABC而積的2倍時,求a, b的
11、值.125. (15分)(2017 肥城模擬)如圖,拋物線行彳x2+bx+c與x軸交于點A ( -2, 0),交y軸于點B(0,求拋物線y=4 x2+bx+c與直線尸kx "2的解析式:(2)設點P是直線AD下方的拋物線上一動點(不與點A、D重合),過點P作y軸的平行線,交直線AD于點M,作 DE_Ly軸于點E.探究:是否存在這樣的點P,使四邊形PMEC是平行四邊形?若存在請求出點P的坐標;若不存在, 請說明理由:在(2)的條件下,作PN1_AD于點N,設PMN的周長為m,點P的橫坐標為x,求m與x的函數關系式,并求 出m的最大值.第17頁共16頁參考答案一、單選題(共10題;共20
12、分)1-1, C2-1, B3-1、。4-1、B5-1, B6、答案:略7-1, 0 8-1, D 9-1, B 10-1, B二、填空題(共6題;共6分)11-1、【第1空】312-1、【第1空】13-K【第回早或3而14-1、【第1空】15-1、【第1空】/110-1016、答案:略三、解答題(共9題;共88分)解:磔£+1 收十后117-1、解:畫樹狀圖:母甲丙丁甲乙丁甲乙丙共有9種等可能的結果,英中符合要求的結果有3種,18-1、.-.P (第2次傳球牌到甲手里)w第拽"18-2、足19、答案:略解:如圖1 ,過點E作EM ABC于點M ,S1由題意知 £
13、BCE = F、EC = 54 EB = £Csin -4 BCE = 54sin7 f s 51.3,20-1.則單主車座E到地面的商度為5iA430;:81f洲解:如圖2所示,過點少作E'H L3C于點H ,S2eh = 70 x 0 >85 = 59.5 ,則 EC : $思CB =篇 " 6?” '202、/.EEf=CP-CE = 62*6-54 = Sow) 解:把A點(1,4)分別代入反比例函數y=與 . 一次函數y=x+b , ®k=l«4 , l+b=4.解得k±4 , b=3 ,91-1 ,反比例函數的
14、解析式是y=& r 一次函數解析式是yr03 ;解:如圖,設直送y=x+3與冰由的交點為C .當”-4時.片-1 一.B ( Y T ,當x=0時,產十3(Or3) rO1 o .Saob$aqc&BOC=%*3”g%x3*l=15/2 21-2、4) , A(l,4),2卜3、,'.很可知:當X > W-4 < X < 0時,一次函數值大于反比例函數值.解:當x > 40時,每臺學習機售價為22-k 800-5 (X-40)=-5x+1000設進貨價y與學習機臺物的困數關系式為丫=kx+b>§(0,700) . ( 50.600
15、 )分別代入y=kx*b ,并計算得到產-2x,700當x=60時,每臺學習機售儕為-5x60+1000=700伉)每臺學習為-2*60+700=580(元)22-2.每臺學習機可以獲利700-580-12。(元)當x>40時,每臺學習機利潤;(-5X+1000 ) - (-2x4-700>= (-3x+300)元x( -3x+300)=4800.得到:xx=80 , 乂2=20(含棄)當近40時,每自利浦:800(-2X+700 )元x (2x+100)-4800,得到;xi=30,X2=-80(含棄)22-3,答:商店可由任開銷替學習磯80臺或30臺.解::拋物線 y 二 x&
16、#39;bx /C LrO) rB(3,0)兩點 r.f l-A+c=O10+動十c=O '解得產二一?.c= -3,拋物線的解析式為:y=x2 - 2x - 3 ,y=x2 - 2x - 3= (x -1)2 - 4 g23t、.扁D的坐標為:(1 , -4)解:S13 = S2 過點D作DE,x軸于點E , DF,淵于F ,CD24.BC2=BD2 r BCD是直角三形,S2=1xO8xOC=S3=lxCDxBC=3f 23-2.解:點M使/AMN=/ACM ,的坐臉 (m , 0),AC=1O .vMN IIBC,. JAf -Iff R(iz?rH.泅-X 即麗一曬解得. AN
17、=M (m+1), I-vzAMN=zACM , zMAN=zCAM .,uamn“acm r嗡,即(m.l) 2二府里(m + 1), mi=l . m2M 1(舍去),泰M的坐標為(,r 0) r設BC的前式為* kx+b,把B (3, 0 ) ,C(0r - 3 )代入得.如 4b=0b=3則BC的解析式為y=x-3 ,又MN n B J.謾直線MN的解析式為y=x+b ,把點M的坐標為(1 r 0)代入得,b二-g ,.-.SMNaUjlWMyx -1 .ZJ-J、-解:二X2 ( m寸3 ) x十9的在x軸正上,方的2 . ( m十3 ) x+9二揖兩的實數根,二( m+3) 2 4
18、乂9=0。嶙得 m=3 或 m= - 9 ,又眥物線對群軸大于0 ,即m+3 > 0 ,24-1、m=3解:由(1)可知拋物線解析式為y=x26x*9 ,聯立一次函數y=x+3 ,可畔,解畔=;或廠( 1=五+3b=4 卜=924-2、乂(1.4) rB(6r9)24-3解;如圖,分別過A、B、. P三點作x鈾的垂淺,垂足分別為R、鼠LvA(lr4) fB(6f9) fC(3r0) fP(arb)I *2x4 - 1 *3x9=15 .;.AR=4.BS=9 , RC=3 -1=2, CS=6 - 3=3 f RS=6 1=5 , PT=b , RT=1 - a , ST=6 a ,SmbchS梯形absr SsRC Sbcs» 4 x( 4+9 )m5 ScPAB 二 S 梯形 pbst - S 榨心 b&R ' S 梯形 ARTP = | C+b ) (6 - a) 15) r1 Cb+4) (1-a) 1 x (4+9) *5=1 (5b - 5a 4乙又S-PA8=2S士ABC, -.1 (5b-5a -15)=3O,即bd=15,b=15+a.P總在拋物線上, b=a2-6a+9 r.15wa26a;9 .解得a二二也.2,.a= 7訴,解:y= 4 x2*bx+cSj2/A (,2.0)和 B(0, 一2 ) 42,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業園區的物業管理及服務創新
- 工業排放控制技術分析
- 工業污染治理的新技術與成果
- 工業建筑設計及其安全防護措施
- 工業廢水零排放技術研究與應用推廣
- 工業污染防治與環保技術探討
- 工業污染的防治與綠色生產
- 工業機器人編程與調試技術研究
- 工業設計中的智能產品創新
- 工業自動化在白水泥生產中的應用研究
- 北師大版四年級下冊小數乘法豎式計算200題及答案
- 【小升初】2023-2024學年貴州遵義市六年級下學期數學期末試題2套(含解析)
- 煙草物理檢驗競賽考試題庫及答案附有答案
- 教科版科學三年級下冊期末測試卷【滿分必刷】
- 24春國家開放大學《行政管理學#》形考任務1-4參考答案
- 高三一輪復習語文教學計劃
- 可可西里守護神杰桑·索南達杰事跡學習
- 機房施工方案及技術措施
- 員工培訓矩陣表
- 精編人教版小學數學1-6年級期末試題匯總(帶答案)
- 摜蛋大賽招商方案
評論
0/150
提交評論