絕對值的教案_第1頁
絕對值的教案_第2頁
絕對值的教案_第3頁
絕對值的教案_第4頁
絕對值的教案_第5頁
已閱讀5頁,還剩9頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、數學教案絕對值教學目標 1了解絕對值的概念,會求有理數的絕對值;2會利用絕對值比較兩個負數的大小;3在絕對值概念形成過程中,滲透數形結合等思想方法,并注意培養學生的思維能力教學建議一、重點、難點分析絕對值概念 既是本節的教學重點又是教學難點。關于絕對值的概念,需要明確的是無論是絕對值的幾何定義,還是絕對值的代數定義,都揭示了絕對值的一個重要性質非負性,也就是說,任何一個有理數的絕對值都是非負數,即無論a取任意有理數,都有 。教材上絕對值的定義是從幾何角度給出的,也就是從數軸上表示數的點在數軸上的位置出發,得到的定義。這樣,數軸的概念、畫法、利用數軸比較有理數的大小、相反數,以及絕對值

2、,通過數軸,這些知識都聯系在一起了。此外,0的絕對值是0,從幾何定義出發,就十分容易理解了。二、知識結構絕對值的定義 絕對值的表示方法 用絕對值比較有理數的大小三、教法建議用語言敘述絕對值的定義,用解析式的形式給出絕對值的定義,或利用數軸定義絕對值,從理論上講都是可以的初學絕對值用語言敘述的定義,好像更便于學生記憶和運用,以后逐步改用解析式表示絕對值的定義,即 在教學中,只能突出一種定義,否則容易引起混亂可以把利用數軸給出的定義作為絕對值的一種直觀解釋此外,要反復提醒學生:一個有理數的絕對值不能是負數,但不能說一定是正數“非負數”的概念視學生的情況,逐步滲透,逐步提出四、有關絕對值的

3、一些內容1絕對值的代數定義一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;零的絕對值是零2絕對值的幾何定義在數軸上表示一個數的點離開原點的距離,叫做這個數的絕對值3絕對值的主要性質 (2)一個實數的絕對值是一個非負數,即|a|0,因此,在實數范圍內,絕對值最小的數是零 (4)兩個相反數的絕對值相等五、運用絕對值比較有理數的大小1兩個負數大小的比較,因為兩個負數在數軸上的位置關系是:絕對值較大的負數一定在絕對值較小的負數左邊,所以,兩個負數,絕對值大的反而小.比較兩個負數的方法步驟是:(1)先分別求出兩個負數的絕對值;(2)比較這兩個絕對值的大小;(3)根據“兩個負數,絕對值大的反而小”

4、作出正確的判斷2兩個正數大小的比較,與小學學習的方法一致,絕對值大的較大教學設計示例絕對值(一)一、素質教育目標(一)知識教學點1能根據一個數的絕對值表示“距離”,初步理解絕對值的概念2給出一個數,能求它的絕對值(二)能力訓練點在把絕對值的代數定義轉化成數學式子的過程中,培養學生運用數學轉化思想指導思維活動的能力(三)德育滲透點1通過解釋絕對值的幾何意義,滲透數形結合的思想2從上節課學的相反數到本節的絕對值,使學生感知數學知識具有普遍的聯系性(四)美育滲透點通過數形結合理解絕對值的意義和相反數與絕對值的聯系,使學生進一步領略數學的和諧美二、學法引導1教學方法:采用引導發現法,輔之以講授,學生討

5、論,力求體現“教為主導,學為主體”的教學要求,注意創設問題情境,使學生自得知識,自覓規律2學生學法:研究6和6的不同點和相同點絕對值概念鞏固練習歸納小結(絕對值代數意義)三、重點、難點、疑點及解決辦法1重點:給出一個數會求出它的絕對值2難點:絕對值的幾何意義,代數定義的導出3疑點:負數的絕對值是它的相反數四、課時安排2課時五、教具學具準備投影儀(電腦)、三角板、自制膠片六、師生互動活動設計教師提出6和6有何相同點和不同點,學生研究討論得出絕對值概念;教師出示練習題,學生討論解答歸納出絕對值代數意義七、教學步驟(一)創設情境,復習導入師:以上我們學習了數軸、相反數在練習本上畫一個數軸,并標出表示

6、6,0及它們的相反數的點學生活動:一個學生板演,其他學生在練習本上畫【教法說明】絕對值的學習是以相反數為基礎的,在學生動手畫數軸的同時,把相反數的知識進行復習,同時也為絕對值概念的引入奠定了基礎,這里老師不包辦代替,讓學生自己練習(二)探索新知,導入新課師:同學們做得非常好!6與6是相反數,它們只有符號不同,它們什么相同呢?學生活動:思考討論,很難得出答案師:在數軸上標出到原點距離是6個單位長度的點學生活動:一個學生板演,其他學生在練習本上做師:顯然A點(表示6的點)到原點的距離是6,B點(表示6的點)到原點距離是6個單位長嗎?學生活動:產生疑問,討論師:6與6雖然符號不同,但表示這兩個數的點

7、到原點的距離都是6,是相同的我們把這個距離叫6與6的絕對值板書2.4絕對值(1)【教法說明】針對“互為相反數的兩數只有符號不同”提出問題:“它們什么相同呢?”在學生頭腦中產生疑問,激發了學生探索知識的欲望,但這時學生很難回答出此問題,這時教師注意引導再提出要求:“找到原點距離是6個單位長度的點”這時學生就有了一個攀登的臺階,自然而然地想到表示6,6的點到原點的距離相同,從而引出了絕對值的概念,這樣一環緊扣一環,時而緊張時而輕松,不知不覺學生已獲得了知識師:6的絕對值是表示6的點到原點的距離,6的絕對值是6;    6的絕對值是表示6的點到原點的距離,6的絕對值是6

8、提出問題:(1)3的絕對值表示什么?         (2)的絕對值呢?         (3)的絕對值呢?學生活動:(1)(2)題根據教師的引導學生口答,(3)題討論后口答板書一個數a的絕對值是數軸上表示數a的點到原點的距離數a的絕對值是|a|【教法說明】由6,6,3,這些特殊的數的絕對值引出數的絕對值,逐層鋪墊,由學生得出絕對值的幾何意義,既理解了一個數的絕對值的含義也訓練了學生口頭表達能力,突破了難點(三)嘗試反饋,鞏固練習師:數

9、可以表示任意數,若把換成,9,0,1,0.4觀察數軸,它們的絕對值各是多少?學生活動:口答:,師:你在自己畫的數軸上標出五個數,讓同桌指出它們的絕對值學生活動:按教師要求自己又當“小老師”又當“學生”教師找一組學生回答,并及時糾正出現的錯誤(出示投影1)例  求8,8,的絕對值師:觀察數軸做出此題學生活動:口答,師:由此題目你能想到什么規律?學生活動:討論得出互為相反數的兩數絕對值相同【教法說明】這一環節是對絕對值的幾何定義的鞏固這里對于絕對值定義的理解不能空談“5的絕對值、7的絕對值是多少”?而是與數軸相結合,始終利用表示這數的點到原點的距離是這個數的絕對值這一概念教師先闡明這個字

10、母可表示任意數,再把換成一組數,學生自己又把換成了一些數,指出它們的絕對值,這樣既理解了數所表示的廣泛含義,又鞏固了絕對值的定義然后,通過例題總結出了互為相反數的兩數的絕對值相等這一規律,既呼應了前面內容,又升華了絕對值的概念師:觀察數軸,在原點右邊的點表示的數(正數)的絕對值有什么特點?在原點左邊的點表示的數(負數)的絕對值呢?生:思考,不能輕易回答出來師:再看前面我們所求的,你能得出什么規律嗎?學生活動:思考后一學生口答教師糾正并板書:板書正數的絕對值是它本身        負數的絕對值是它的相反數  

11、;      0的絕對值是0師:字母可表示任意的數,可以表示正數,也可以表示負數,也可以表示0教師引導學生用數學式子表示正數、負數、0,并再提問:這時的絕對值分別是多少?學生活動:分組討論,教師加入討論,學生互相補充回答教師板書:板書若,則若,則若,則師強調:這種表示方法就相當于前面三句話,比較起來后者更通俗易懂【教法說明】用字母表示規律是難點這時教師放手,讓學生有目的地考慮、分析,共同得出結論鞏固練習:(出示投影2)1化簡:,;2計算:學生活動:1題口答,2題自己演算,三個學生板演【教法說明】1題的前四個旨在直接運用絕對值的性質,后兩個略有加

12、深,需要討論后回答;2題(3)小題讓學生區別絕對值符號和括號的不同含義(四)歸納小結師:這節課我們學習了絕對值(1)一個數的絕對值是在數軸上表示這個數的點到原點的距離;(2)求一個數的絕對值必須先判斷是正數還是負數回顧反饋:(出示投影3)13的絕對值是在_上表示3的點到_的距離,3的絕對值是_2絕對值是3的數有_個,各是_;   絕對值是2.7的數有_個,各是_;   絕對值是0的數有_個,是_   絕對值是2的數有沒有?(總結:)3(1)若,則;  (2)若,則【教法說明】教師在總結完本節課的知識要點后,再回頭對本節重點內

13、容進行反饋練習,并且注意把知識進行升華八、隨堂練習1判斷題(1)數的絕對值就是數軸上表示數的點與原點的距離(      )(2)負數沒有絕對值(      )(3)絕對值最小的數是0(      )(4)如果甲數的絕對值比乙數的絕對值大,那么甲數一定比乙數大(      )(5)如果數的絕對值等于,那么一定是正數2填表原數3      相反數   

14、   絕對值    0  倒數      3填空(1);(2);(3);(4);(5)若,則;(6)九、布置作業課本第66頁2、4十、板書設計  隨堂練習答案1 × × ×2略3(1),(2)7,(3)7,(4)2,(5)3或3,(6)作業答案27,7,0.35,4, , 絕 對 值(二)一、素質教育目標(一)知識教學點會利用絕對值比較兩個負數的大小(二)能力訓練點利用絕對值概念比較有理數的大小,培養學生的邏輯思維能力(三)德育滲透點不斷加深對有理數比較大小方法的認識,滲透數

15、形結合的思想(四)美育滲透點通過本節課的學習,學生會發現利用絕對值比較兩個負數大小與利用數軸比較任意兩個數的大小是和諧統一的,學生會進一步感受到數學的和諧美二、學法引導1教學方法:采用引導發現法總結規律,并輔之以變式訓練進行扎實鞏固,以復習提問作為鋪墊,突破難點2學生學法:觀察討論歸納練習三、重點、難點、疑點及解決辦法1重點:利用絕對值比較兩個負數的大小2難點:利用絕對值比較兩個異分母負分數的大小四、教具學具準備投影儀(或電腦)、自制膠片五、師生互動活動設計教師提出問題,學生討論歸納;教師出示練習題,學生練習鞏固六、教學步驟(一)創設情境,復習提問師:我們前面學習了絕對值,我相信大家學得都非常

16、好一定能做好下面這個題板書比較大小   (1)與       與   (2)4與5          0.9與1.1       10與0         9與1學生活動:(1)題在練習本上演算,兩個學生板演,(2)題學生搶答【教法說明】(1)題是為了分散利用絕對值比較

17、兩個負分數的大小這一難點埋下了伏筆,在這個題目中用最簡單的“,”的形式訓練學生簡單的推理能力(2)題是復習利用數軸比較兩個數的大小,讓學生體會出這四個題中覺得難度較大的題目是最后小題兩個負數比較大小,從而引出課題教師板書課題板書  2.4   絕對值(2)(二)探索新知,講授新課1規律的發現在比較9與1時,教師訂正的同時要求學生說出比較9與1的根據(數軸上的兩個數右邊的總比左邊的大),同時在黑板上(學生在練習本上)畫出數軸提出問題:在數軸上任意取兩個負數,比較大小,觀察較小的數有什么特點?學生活動:嘗試舉例,討論得出結果兩個負數,絕對值大的反而小,或兩個負數絕對值

18、小的反而大(師板書)強調:今后比較兩個負數的大小又多了一種方法,即兩個負數,絕對值大的反而小【教法說明】教師注意“放”時要讓學生帶著針對性的問題去思考、分析,既給學生一片自己發揮想象的天地,又使學生不至于走偏鞏固練習:(出示投影1)比較大小:(1)3與8;              (2)0.1與0.2;(3)與;             (4)與

19、學生活動:討論后搶答【教法說明】(1)題讓學生討論時注意寫好比較大小的格式,運用“”、“”的格式初步訓練學生邏輯推理能力(2)(3)(4)題通過數的變化,鞏固對規律的認識板書解:           2出示例題(出示投影2)比較大小(1)與提出問題:對于異分母的兩個負分數怎樣利用絕對值比較大小?學生活動:討論后自己嘗試寫師:我們在復習時已比較出了與的絕對值,可以在此基礎上直接得出結論板書解:          

20、60;              【教法說明】由于復習時學生對與已進行了比較,會非常輕松的完成此題目教師設置了一級一級的臺階,讓學生自己攀登,既發揮了學生的主體作用,又從題目的解決過程中訓練了學生的推理能力鞏固練習:(出示投影3)比較大小:(1)與,(2)與學生活動:兩個學生板演,其他學生自己練習【教法說明】比較兩個負分數的大小是這節的重點也是難點,利用這兩個小題讓學生從整體上把握一下方法,達到熟練掌握的程度(三)歸納小結師:我們今天主要學習的是兩個負數比較大小(1)兩個負數

21、,絕對值大的反而小(2)利用數軸可以比較任意兩個數的大小,包括兩個負數【教法說明】教師的小結必須把今天的所學納入知識系統,明確說明利用數軸可以比較任意兩數的大小,而利用絕對值比較大小只適用于兩個負數七、隨堂練習1判斷題(1)兩個有理數比較大小,絕對值大的反而小(2)(3)有理數中沒有最小的數(4)若,則(5)若,則2比較大小(1)2_5,0.01_1(2)和(要有過程)3寫出絕對值不大于4的所有整數,并把它們表示在數軸上八、布置作業(一)必做題:課本第67頁A組7(二)選做題:課本第68頁B組3九、板書設計  隨堂練習答案1× × × 2(1),

22、0; ;(2)3±1,±2,±3,±4,0作業答案(一)必做題:7(1)         (2)(3)              (4)(二)選做探究活動填空:(1)若|a|6,則a_;(2)若|-b|0.87,則b_; (4)若x+|x|0,則x是_數分析:已知一個數的絕對值求這個數,則這個數有兩個, 它們是互為相反數由 解: (1)|a|6,a±6;(2)|-b|0.87,b±0.87;  (4)x+|x|0,|x|-x|x|0,-x0x0,x是非正數點評:“絕對值”是代數中最重要的概念之一,應當從正、逆兩個方面來理解這個概念對絕對值的代數定義,至少要認識到以下四點:(1)任何一個數的絕對值一定是正數或0,即|a|0;(2)互為相反數的兩個數的絕對值相等,|a|=|-a|;(3)如果一個數的絕對值是它本身,那么這個數一定是正數或0;如果一個數的絕對值是它的相反數,那么這個數一定是負數或0;(4)求一個含有字母的代數式的值,一定要根據字母的取值范圍分情況進行討論題:3第2人教版新課標初一上學期數學絕對

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論