銳角三角函數1_第1頁
銳角三角函數1_第2頁
銳角三角函數1_第3頁
銳角三角函數1_第4頁
銳角三角函數1_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、解直角三角形解直角三角形-銳角三角函數銳角三角函數A的鄰邊bACBA的對邊的對邊a斜邊斜邊c直角三角形的認識直角三角形的認識1:對于A來說:2:對于:對于B來說來說,它它們分別是什么?們分別是什么?1、角與角之間的關系:、角與角之間的關系:兩銳角互余。兩銳角互余。2、邊與邊之間的關系:、邊與邊之間的關系: a2+b2=c2那么直角三角形的角與邊之間又有什么關系?那么直角三角形的角與邊之間又有什么關系? 當直角三角形的一個銳當直角三角形的一個銳角的大小確定時角的大小確定時,其對邊其對邊與斜邊,鄰邊與斜邊,對與斜邊,鄰邊與斜邊,對邊與鄰邊、鄰邊與對邊比邊與鄰邊、鄰邊與對邊比值也是惟一確定的嗎?值也

2、是惟一確定的嗎? 想一想想一想 比一比比一比思考:在在RtAB3C3中,當銳角中,當銳角A取其它的固定取其它的固定值的時候,值的時候,A的對邊與鄰邊的比值還會是一個固的對邊與鄰邊的比值還會是一個固定值嗎?定值嗎?AB3C3C1C2B2B1分析:分析:易知易知 RtAB1C1 RtAB2C2 RtAB3C3ACCBACCBACCB333222111可見:在在RtABC中,對于銳角中,對于銳角A的每的每一個確定的值,它的一個確定的值,它的對邊與鄰邊的比值是對邊與鄰邊的比值是一個定值。一個定值。在在RtRtABCABC中中 及時總結經驗,要養成積累及時總結經驗,要養成積累方法和經驗的良好習慣!方法和

3、經驗的良好習慣! =ab的鄰邊的對邊AAtanA=cotA=A的鄰邊的鄰邊A的對邊的對邊=ab=acsinA=斜邊的對邊A=bccosA=斜邊的鄰邊A 在在Rt ABC中對于銳角中對于銳角A的每一個的每一個確定的值,確定的值,sinA、cosA、tanA、cotA都有唯一的確定的值與它對應,所以都有唯一的確定的值與它對應,所以把銳角把銳角A的正弦、余弦、正切、余切叫的正弦、余弦、正切、余切叫做做A的銳角三角函數的銳角三角函數。例例1:求出如圖所示的:求出如圖所示的RtABC中,中,A的四個的四個三角函數值三角函數值ACB158解: RtABC中,根據勾股定理得:中,根據勾股定理得:AB=171

4、78sinABBCA158tanACBCA815cotBCACA1715cosABACA應應用用舉舉例例1、在在Rt ABC中,中,C90,求,求A的三角函數值。的三角函數值。 a=9 b=12 2、在在ABC中,中,AB=AC4,BC=6,求,求B的三角函的三角函數值。數值。下圖中下圖中ACB=90ACB=90,CDAB,CDAB,垂足為垂足為D D。指出。指出A A和和B B的對邊、鄰邊。的對邊、鄰邊。ABCD(1) tanA = =AC( )CD( )(2) tanB= =BC( )CD( )BCADBDAC 如圖如圖, ,在在RtRtABCABC中中, ,銳角銳角A A的鄰邊和斜邊同時

5、的鄰邊和斜邊同時擴大擴大100100倍倍, ,tanAtanA的值(的值( ) A.A.擴大擴大100100倍倍 B.B.縮小縮小100100倍倍 C.C.不變不變 D.D.不能確定不能確定ABCC C練習:練習:1:在:在RtABC中,中,C=900,斜邊斜邊AB是直角邊是直角邊AC的的3倍。求倍。求A的四個三角函數值的四個三角函數值解:設:解:設:AC=x,則:,則:AB=3x。在在RtABC中,根據勾股定理得:中,根據勾股定理得:BC=x22322sinABBCA31ABACCOSA22tanACBCA42cotBCACAACB2:已知:已知sinA= ,求求A的另外三個三角函數的另外三

6、個三角函數值值53ACB解:解:53sinABBCA設BC=3x,AB=5x在在RtABC中,根據勾股定理得:中,根據勾股定理得:AC=4X53sinABBCA54ABACCOSA43tanACBCA34cotBCACA定義定義中應該注意的幾個問題中應該注意的幾個問題: :回味回味 無窮無窮 1 1、sinAsinA、cosAcosA、tanAtanA、cotAcotA是在是在直角三角直角三角形形中定義的,中定義的,A A是是銳角銳角( (注意注意數形結合數形結合,構造,構造直角三角形直角三角形) )。 2 2、sinAsinA、 cosAcosA、tanAtanA、cotAcotA是一個是一

7、個比值比值(數數值值)。)。 3 3、sinAsinA、 cosAcosA 、tanAtanA、cotAcotA的大小只與的大小只與A A的大小的大小有關,而與有關,而與直角三角形的邊長直角三角形的邊長無關。無關。 1.銳角三角函數定義斜邊對邊正弦斜邊鄰邊余弦鄰邊對邊正切對邊鄰邊余切銳角三角函數定義w正弦正弦, ,余弦余弦, ,正切正切, ,余切余切: : 回顧與思考回顧與思考駛向勝利的彼岸bABCac,sincaA ,coscbA ,tanbaA .cotabA ,sincbB ,coscaB ,tanabB .cotbaB 定義的應用定義的應用1:取值范圍:取值范圍:ACB0sinA10c

8、osA1tanA0cotA0自己完成證明自己完成證明2.互余互余兩角之間的三角函數關系兩角之間的三角函數關系:w直角三角形直角三角形兩銳角互余兩銳角互余: :A+B=90A+B=900 0. .bABCac則則 sinAsinA= =cosBcosB或或cosAcosA= =sinBsinB. .,sincaA,coscbA,tanbaA.cotabA,sincbB ,coscaB ,tanabB .cotbaB tanAtanA= =cotBcotB或或cotAcotA= =tanBtanB. .3.3.同角同角之間的三角函數的關系之間的三角函數的關系平方和平方和關系關系: :bABCac.

9、 1cossin22AA.cos1sin22AA.cos1sin2AA或.sin1cos22AA.sin1cos2AA或商商的關系的關系: :.sincoscot,cossintanAAAAAA倒數倒數關系關系: :. 1cottanAA.cot1tanAA.tan1cotAA一個定理30直角三角形中, 的銳角所對的直角邊是斜邊的一半3012BA CA B如 圖 所 示 , 當時 ,這個結論你知道是如何得出的嗎?理由如下理由如下:過點過點C作作AB邊上的中線邊上的中線CDBCADACB=900AD=CD=BDB=300DCB=300ACD=600ACD是等邊是等邊三角形三角形AC=AD=AB2

10、1特殊角的三角函數值表w要能記要能記住有多住有多好好三角函數銳角正弦sin余弦cos正切tan余切cot30045060021233332222112321333w結論:正弦和正切隨著結論:正弦和正切隨著角的增大而增大,余弦和角的增大而增大,余弦和余切隨著角的增大而減小余切隨著角的增大而減小300600450450111232 1. 1.計算計算: :(1)sin(1)sin300+cos+cos450(2)sin(2)sin2 2600+cos+cos2 2600+tan+tan450提示提示: :SinSin2 2600表示表示( (sinsin600) )2 2coscos2 2600表

11、示表示( (coscos600) )2 2解解: : (1)sin(1)sin300+cos+cos450(2)(2)原式原式 2221.221121232214143. 02.2.計計 算算; ;(1)tan45(1)tan450-sin30-sin300(2)cos(2)cos600+sin45+sin450-tan3-tan300 .45cos260sin330tan630002直角三角形中的邊角關系直角三角形中的邊角關系1.1.直角三角形三邊的關系直角三角形三邊的關系: : a a2 2+b+b2 2=c=c2 2. .2.2.直角三角形兩銳角的關系直角三角形兩銳角的關系: : A+B=90 A+B=900 0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論