




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、小學經(jīng)典數(shù)學應用題:數(shù)字數(shù)位問題(含答案解析)這些題目都是小升初奧數(shù)經(jīng)典題、難題,在學科競賽、小升初考試中都經(jīng)常出現(xiàn)。建議家長保存起來,幫助孩子做好鞏固和拓展。注: / 為分數(shù)線1.把1至2005這2005個自然數(shù)依次寫下來得到一個多位數(shù)123456789.2005,這個多位數(shù)除以9余數(shù)是多少?本題考點:整除性質(zhì)考點點評:本題主要是依據(jù)“一個自然數(shù)除以9的余數(shù)等于這個自然數(shù)的各個數(shù)位上的數(shù)字之和除以9的余數(shù)”這個規(guī)律來完成的問題解析2005這個多位數(shù)的數(shù)字之和是多少,根據(jù)其各位數(shù)字之和除以9的除數(shù)理多少來判斷:2至2005這2004個數(shù)分成如下1002組:(2,2005),(3,2004),(
2、4,2003),(1002,1005),(1003,1004)以上每組兩數(shù)之和都是2007,且兩數(shù)相加沒有進位,這樣2至2005這2004個自然數(shù)的所有數(shù)字之和是:(2+0+0+7)×2005除以9的余數(shù)是1首先研究能被9整除的數(shù)的特點:如果各個數(shù)位上的數(shù)字之和能被9整除,那么這個數(shù)也能被9整除;如果各個位數(shù)字之和不能被9整除,那么得的余數(shù)就是這個數(shù)除以9得的余數(shù)。解題:首先任意連續(xù)9個自然數(shù)之和能被9整除,也就是說,一直寫到2007能被9整除,所以答案為1(1+2+3+2005)÷9=(2006×2005)/2÷9=223446余1所以12345678
3、9.2005除以9的余數(shù)是1.2.A和B是小于100的兩個非零的不同自然數(shù)。求A+B分之A-B的最小值.解:(A-B)/(A+B)=(A+B-2B)/(A+B)=1-2*B/(A+B)前面的1不會變了,只需求后面的最小值,此時(A-B)/(A+B)最大。對于B/(A+B)取最小時,(A+B)/B取最大。問題轉換為求(A+B)/B的最大值。(A+B)/B=1+A/B,最大的可能性是A/B=99/1(A+B)/B=100(A-B)/(A+B)的最大值是:98/1003.已知A.B.C都是非0自然數(shù),A/2 + B/4 + C/16的近似值市6.4,那么它的準確值是多少?本題考點:數(shù)字問題考點點評:
4、經(jīng)過通分將分數(shù)加法算式變化整除加法算式,從而確定和的準確值的取值范圍是完成本題的關鍵問題解析:由于本題中是三個分數(shù)相加,因此可根據(jù)分數(shù)加法的運算法則先進行通分,將算式變?yōu)檎麛?shù)加法算式后再進行分析解答因為A/2+B/4+C/166.4,通分后可得:8A+4B+C102.4,由于A、B、C為非0自然數(shù),因此8A+4B+C為一個整數(shù),可能是102,也有可能是103當是102時,102÷16=6.375,當是103時,103÷16=6.4375答:它的準確值為6.375或6.43754.一個三位數(shù)的各位數(shù)字 之和是17.其中十位數(shù)字比個位數(shù)字大1.如果把這個三位數(shù)的百位數(shù)字與個位數(shù)
5、字對調(diào),得到一個新的三位數(shù),則新的三位數(shù)比原三位數(shù)大198,求原數(shù).本題考點:位值原則考點點評:解決位值問題,一般要用字母表示各位數(shù)字,通過解方程求得問題解析設個位是a,十位a+1,百位17-a-a-1=16-2a根據(jù)題意列出方程:100a+10a+16-2a-100(16-2a)-10a-a=198,解這個方程,求出個位數(shù)字,然后再求十位與百位數(shù)字,解決問題設原數(shù)個位為a,則十位為a+1,百位為16-2a,根據(jù)題意列方程100a+10(a+1)+16-2a-100(16-2a)-(10a+1)-a=198,解得a=6,則a+1=7,16-2a=4;答:原數(shù)為4765.一個兩位數(shù),在它的前面寫
6、上3,所組成的三位數(shù)比原兩位數(shù)的7倍多24,求原來的兩位數(shù).本題考點:位值原則此題可用方程解答,設原來的兩位數(shù)為a,則該三位數(shù)為300+a,原兩位數(shù)的7倍多24的數(shù)是7a+24,由此列出方程7a+24=300+a,解方程,得出這個兩位數(shù)設原來的兩位數(shù)為a,則該三位數(shù)為300+a,7a+24=300+a,6a=276, a=46;答:原來的兩位數(shù)為46考點點評:此題也可用算術方法理解:所組成的三位數(shù)比原兩位數(shù)的7倍多24,也就是用組成的三位數(shù)減去24,正好是原來兩位數(shù)的(7-1)倍,所以原來的兩位數(shù)是(3×100-24)÷(7-1),解答即可6.把一個兩位數(shù)的個位數(shù)字與十位數(shù)
7、字交換后得到一個新數(shù),它與原數(shù)相加,和恰好是某自然數(shù)的平方,這個和是多少?本題考點:數(shù)字問題考點點評:任意一個兩位數(shù)的個位數(shù)字與十位數(shù)字交換后得到一個新數(shù),它與原數(shù)相加,和一定是11的倍數(shù)問題解析設這個數(shù)的個位數(shù)為b,十位數(shù)為a,則這個數(shù)為10a+b,個位數(shù)與十位數(shù)交換后為:10b+a,兩數(shù)的和為:10a+b+10b+a=11(a+b),則兩數(shù)的和為11的倍數(shù),得到的和恰好是某個自然數(shù)的平方,所以它們的和是11×11=1217.一個六位數(shù)的末位數(shù)字是2,如果把2移到首位,原數(shù)就是新數(shù)的3倍,求原數(shù).本題考點:位值原則考點點評:解答此類問題,一般要用到方程解法,因此,方程思想是最重要的
8、數(shù)學思想問題解析設原六位數(shù)為abcde2,則新六位數(shù)為2abcde,再設abcde(五位數(shù))為x,則原六位數(shù)就是10x+2,新六位數(shù)就是200000+x,根據(jù)題意得,(200000+x)×3=10x+2,解這個方程求出五位數(shù),然后再其后放上數(shù)字2即可解:設原六位數(shù)為abcde2,則新六位數(shù)為2abcde,再設abcde(五位數(shù))為x,則原六位數(shù)就是10x+2,新六位數(shù)就是200000+x,根據(jù)題意得:(200000+x)×3=10x+2,解得:x=85714,10x+2=857142;答:原數(shù)為8571428.有一個四位數(shù),個位數(shù)字與百位數(shù)字的和是12,十位數(shù)字與千位數(shù)字的
9、和是9,如果個位數(shù)字與百位數(shù)字互換,千位數(shù)字與十位數(shù)字互換,新數(shù)就比原數(shù)增加2376,求原數(shù).設原四位數(shù)為abcd,則新數(shù)為cdab,且d+b=12,a+c=9根據(jù)“新數(shù)就比原數(shù)增加2376”可知abcd+2376=cdab,列豎式容易看出:根據(jù)d+b=12,可知d、b可能是3、9;4、8;5、7;6、6再觀察豎式中的個位,便可以知道只有當d=3,b=9;或d=8,b=4時成立先取d=3,b=9代入豎式的百位,可以確定十位上有進位根據(jù)a+c=9,可知a、c可能是1、8;2、7;3、6;4、5再觀察豎式中的十位,便可知只有當c=6,a=3時成立再代入豎式的千位,成立得到:abcd=3963再取d
10、=8,b=4代入豎式的十位,無法找到豎式的十位合適的數(shù),所以不成立答:原數(shù)是3963本題考點:位值原則考點點評:此題也可這樣解答:由b+d=12,a+c=9,1000c+100d+10a+b-(1000a+100b+10c+d)=2376,化簡得10c+d=63,那么c=6,d=3;再由b+d=12,a+c=9,可得b=9,a=3因此原數(shù)是3963問題解析此題設原四位數(shù)為abcd,則新數(shù)為cdab,且d+b=12,a+c=9,根據(jù)“新數(shù)就比原數(shù)增加2376”可知abcd+2376=cdab,根據(jù)條件“d+b=12”,推出d、b的值;然后根據(jù)d、b的值和已知條件“a+c=9”推出a、c的值9.有
11、一個兩位數(shù),如果用它去除以個位數(shù)字,商為9余數(shù)為6,如果用這個兩位數(shù)除以個位數(shù)字與十位數(shù)字之和,則商為5余數(shù)為3,求這個兩位數(shù).問題解析此題可以設出這個兩位數(shù)為ab,根據(jù)被除數(shù)、除數(shù)、商和余數(shù)的關系,寫成10a+b=9b+6,10a+b=5(a+b)+3,化簡后得:5a-4b=3,由于a、b均為一位整數(shù),可推出a、b的值,進而得解本題考點:位值原則考點點評:此題解答的關鍵是設出這個兩位數(shù)為ab,根據(jù)被除數(shù)、除數(shù)、商和余數(shù)的關系,求出a、b的值設這個兩位數(shù)為ab,由題意得:10a+b=9b+6,10a+b=5(a+b)+3;所以9b+6=5(a+b)+3,化簡,得5a-4b=3,由于a、b均為一
12、位整數(shù),所以a=3或7,b=3或8;但33不符合題意,因此原數(shù)為78答:這個兩位數(shù)是7810.如果現(xiàn)在是上午的10點21分,那么在經(jīng)過28799.99(一共有20個9)分鐘之后的時間將是幾點幾分?本題考點:日期和時間的推算考點點評:此題考查了時間的推算,關鍵是把大數(shù)2879999(20個9)化成幾天后的幾時幾分,然后到達時刻=開始時刻+經(jīng)過時間問題解析首先把2879999(20個9)分鐘除以24×60=1440分鐘化成天數(shù),得到是19999(19個9)天余1439分,把1439化成復名數(shù),先除以進率60商23就是時數(shù),余數(shù)59就是分鐘數(shù),用開始時刻10時21分加上23時59分,即可得
13、解2879999(20個9)÷1440=1999(19個9)(天)1439(分),1439÷60=23(時)59(分),10時21分+23時59分=34時20分,34時20分-24時=10時20分;答:如果現(xiàn)在是上午的10點21分,那么經(jīng)過2879999(一共有20個9)分鐘之后的時間是 10點20分;故答案為:10,20小學經(jīng)典數(shù)學應用題:工程問題(含答案解析)1甲乙兩個水管單獨開,注滿一池水,分別需要20小時,16小時.丙水管單獨開,排一池水要10小時,若水池沒水,同時打開甲乙兩水管,5小時后,再打開排水管丙,問水池注滿還是要多少小時?問題解析把一池水的水量看作單位“1
14、”,5小時甲乙兩個水管共注水(1/20+1/16)×5=9/16,離注滿還有7/16,這時打開丙管,求注滿水池需要的時間,列式為7/16÷(1/20+1/16-1/10),解決問題本題考點:簡單的工程問題考點點評:在此題中,求出甲乙兩個水管5小時的注水量是解答問題的關鍵設水池內(nèi)部體積為1,甲水管流量為1/20,乙水管流量為1/16,丙水管的流量為1/10. 同時打開甲乙水管,進水流量為(1/20+1/16)=9/80, 5個小時的注水量為9/80*5=9/16. 甲乙丙水管同時開,其進水流量為甲乙進水流量減去丙出水流量(9/80-1/10)=1/80。 5個小時候水池沒有充
15、滿的體積為1-9/16=7/16.。 需要時間等于水池剩余容積除以現(xiàn)在水池進水流量為7/16除以1/80=35小時 所以,水池注滿還需35小時1/20+1/169/80表示甲乙的工作效率9/80×545/80表示5小時后進水量1-45/8035/80表示還要的進水量35/80÷(9/80-1/10)35表示還要35小時注滿答:5小時后還要35小時就能將水池注滿.2修一條水渠,單獨修,甲隊需要20天完成,乙隊需要30天完成。如果兩隊合作,由于彼此施工有影響,他們的工作效率就要降低,甲隊的工作效率是原來的五分之四,乙隊工作效率只有原來的十分之九。現(xiàn)在計劃16天修完這條水渠,且要
16、求兩隊合作的天數(shù)盡可能少,那么兩隊要合作幾天?問題解析由題意得,甲的工效為1/20,乙的工效為1/30,甲乙的合作工效為1/20×4/5+1/30×9/10=7/100,可知甲乙合作工效甲的工效乙的工效又因為,要求“兩隊合作的天數(shù)盡可能少”,所以應該讓做的快的甲多做,16天內(nèi)實在來不及的才應該讓甲乙合作完成只有這樣才能“兩隊合作的天數(shù)盡可能少”所以可設合作時間為x天,則甲獨做時間為(16-x)天,由此可得等量關系式:1/20×(16-X)+(7/100)X=1,解此方程即可本題考點:工程問題考點點評:明確要使兩隊合作的天數(shù)盡可能少就要讓效率快的甲隊盡量多做是完成本
17、題的關鍵解答: 兩隊合作的工作效率為:1/20×4/5+1/30×9/10=7/100,設合作時間為x天,則甲獨做時間為(16-x)天,可得方程:1/20×(16-X)+(7/100)X=14/5-(1/20)X+(7/100)X=1,(1/50)X=1/5x=10答:兩隊要合作10天3一件工作,甲、乙合做需4小時完成,乙、丙合做需5小時完成。現(xiàn)在先請甲、丙合做2小時后,余下的乙還需做6小時完成。乙單獨做完這件工作要多少小時?問題解析甲、乙合作需4小時完成,則甲乙的效率和是1/4,乙、丙合作需5小時完成,則乙丙的效率和是1/5,甲、丙先合作2小時,余下的乙6小時完
18、成,可以看作甲乙合作2小時,乙丙合作2小時,然后乙再單獨做6-2-2=2小時完成,于是可求乙的工效進而可求出其單獨做所需的時間本題考點:簡單的工程問題考點點評:此題主要考查工作量、工作時間及工作效率之間的關系解:由題意知, 甲、乙合作需4小時完成,則甲乙的效率和是1/4,乙、丙合作需5小時完成,則乙丙的效率和是1/5.(1/4+1/5)×29/10表示甲做了2小時、乙做了4小時、丙做了2小時的工作量。根據(jù)“甲、丙合做2小時后,余下的乙還需做6小時完成”可知:甲做2小時、乙做6小時、丙做2小時一共的工作量為1。所以19/101/10表示乙做6-42小時的工作量。1/10÷21
19、/20表示乙的工作效率。1÷1/2020小時表示乙單獨完成需要20小時。答:乙單獨做這件工作要20小時4一項工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,這樣交替輪流做,那么恰好用整數(shù)天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,這樣交替輪流做,那么完工時間要比前一種多半天。已知乙單獨做這項工程需17天完成,甲單獨做這項工程要多少天完成?問題解析依據(jù)交替輪流做的這兩種方法可得:當恰好用整數(shù)天完工時,這個整天數(shù)一定是奇數(shù),因為如果整天數(shù)是偶數(shù)的話,那么這兩種情況下,甲和乙做的天數(shù)是相同的,他們完成的工作總量應該是一樣的,不會出現(xiàn)第二種情況比第一種情況多用半天,所以
20、這個整天數(shù)一定是奇數(shù),即前面做的偶數(shù)天數(shù)都是兩人互相輪替做的,完成的工作總量相等,第一種情況下,最后一天是甲做,第二種情況下,最后一天是乙做,還需要甲再做半天,也就是說甲的工作效率=乙的工作效率+1/2甲的工作效率,即乙的工作效率=甲的工作效率×1/2,把這項工程看作單位“1”,先根據(jù)分數(shù)除法意義求出甲的工作效率,再根據(jù)工作時間=工作總量÷工作效率解答本題考點:工程問題考點點評:本題在解答時關鍵要明確:交替輪流做的這兩種方法,恰好用整數(shù)天完工時,這個整天數(shù)一定是奇數(shù)重點是根據(jù)前面做的偶數(shù)天數(shù)完成的工作總量一樣,找出第一種情況最后一天及第二種情況最后一天和半天完成工作的人比較
21、即可解答.第二種解法:半天=1/2天,依據(jù)分析可得:1÷(1/17÷1/2),=1÷2/17,=8.5(天),5師徒倆人加工同樣多的零件。當師傅完成了1/2時,徒弟完成了120個。當師傅完成了任務時,徒弟完成了4/5這批零件共有多少個?問題解析當師傅完成了任務時,徒弟完成了4/5,即徒弟的工作效率是師傅工作效率的4/5,由于加工的零件同樣多,當師傅完成了1/2時,則徒弟完成了1/2×4/5=2/5,此時徒弟完成的個數(shù)為120個,所以師傅與徒弟分別加工了120÷2/5=300個,則這批零件共有300×2=600個本題考點:分數(shù)除法應用題
22、考點點評:先根據(jù)分數(shù)乘法的意義求出120個零件占每人加工零件數(shù)的分率是完成本題的關鍵解:120÷(1/2×4/5) ×2=120÷2/5×2,=600(個)答:這批零件共有600個6一批樹苗,如果分給男女生栽,平均每人栽6棵;如果單份給女生栽,平均每人栽10棵。單份給男生栽,平均每人栽幾棵?問題解析把此題當作工程問題來處理,先把這批樹苗的總棵數(shù)看作單位“1”,則男女生的總人數(shù)為1/6;女生的人數(shù)為1/10;那么男生的人數(shù)就是1/6-1/10,然后解答即可本題考點:工程問題考點點評:本題的特點是這批樹苗的總棵數(shù)不知道,所以按工程問題解答比較容易,
23、那樣就可以分別表示出男女生的人數(shù)解:1÷(1/6-1/10)15棵答:單份給男生栽,平均每人栽15棵7一個池上裝有3根水管。甲管為進水管,乙管為出水管,20分鐘可將滿池水放完,丙管也是出水管,30分鐘可將滿池水放完。現(xiàn)在先打開甲管,當水池水剛溢出時,打開乙,丙兩管用了18分鐘放完,當打開甲管注滿水是,再打開乙管,而不開丙管,多少分鐘將水放完?問題解析把全部的水量看作單位“1”乙管為出水管,20分鐘可將滿池水放完,丙管也是出水管,30分鐘可將滿池水放完如果同時開,乙管和丙管它們一分鐘的排水量可得1/20+1/30=1/12,如果水池的水是滿的并且甲管是不開的,乙和丙合作需要1÷
24、;(1/20+1/30)=12分鐘,現(xiàn)在的情況是,乙和丙在放水的時候甲還在進水,所以延長了把水池放光的時間,也就是延長了18-12=6分鐘那么這6分鐘的放水量是1/12×(18-12)=1/12×6=1/2這里的放水總量就是甲18分鐘放進來的水量然后用1/2這個總量除以甲所花的時間算出來的1/36就是甲每分鐘的進水量(也可以理解成如果出水管不工作只是甲在進水的話,注滿時間是36分鐘)當打開甲管注滿水,再打開乙管,而不開丙管,甲進水和乙出水是有差距的,差距是就是每分鐘(1/20-1/36),即每分鐘的出水量就用水的總量除以出水的速度,就得出了時間本題考點:工程問題考點點評:解
25、答此題關鍵是根據(jù)當水池水剛溢出時,打開乙,丙兩管用了18分鐘放完,實際上用了1÷(1/20+1/30)=12分鐘,多了6分鐘說明乙和丙在放水的時候甲還在進水,這6分鐘的放水量就是甲管18分鐘的進水量,此題也就突破了難點,再根據(jù)題中信息即可完成解:1÷(1/20+1/30)12 表示乙丙合作將滿池水放完需要的分鐘數(shù)。1/12*(18-12)1/12*61/2 表示乙丙合作將漫池水放完后,還多放了6分鐘的水,也就是甲18分鐘進的水。1/2÷181/36 表示甲每分鐘進水最后就是1÷(1/20-1/36)45分鐘答:是45分鐘。8某工程隊需要在規(guī)定日期內(nèi)完成,
26、若由甲隊去做,恰好如期完成,若乙隊去做,要超過規(guī)定日期三天完成,若先由甲乙合作二天,再由乙隊單獨做,恰好如期完成,問規(guī)定日期為幾天?問題解析首先設工作總量為1,未知的規(guī)定日期為x則甲單獨做需x天,乙隊需x+3天由工作總量=工作時間×工作效率這個公式列方程易求解本題考點:分式方程的應用考點點評:考查了分式方程的應用,本題涉及分式方程的應用,難度中等考生需熟記工作總量=工作時間×工作效率這個公式由題意得:甲乙的工作效率比是3:2甲、乙分別做全部的的工作時間比是2:3時間比的差是1份實際時間的差是3天所以3÷(3-2)×26天,就是甲的時間,也就是規(guī)定日期方程
27、方法:1/x+1/(x+2)×2+1/(x+2)×(x-2)1解得x6(天)或者:設規(guī)定日期為x天。把全部工程看作1,甲每天完成1/x,乙每天完成1/(x+3)1/x×21/(x+3)×x=1解得:x=6(天)9兩根同樣長的蠟燭,點完一根粗蠟燭要2小時,而點完一根細蠟燭要1小時,一天晚上停電,小芳同時點燃了這兩根蠟燭看書,若干分鐘后來點了,小芳將兩支蠟燭同時熄滅,發(fā)現(xiàn)粗蠟燭的長是細蠟燭的2倍,問:停電多少分鐘?問題解析由于點完一根粗蠟燭要2小時,點完一根細蠟燭要1小時,那么一分鐘要燃燒粗蠟燭的1/120,細蠟燭的1/60,設停電x分鐘,那么兩個蠟燭分別剩
28、下(1-X/120)和(1-X/60),而次仁將兩支蠟燭同時熄滅,發(fā)現(xiàn)粗蠟燭的長是細蠟燭的2倍,由此即可列出方程解決問題本題考點:一元一次方程的應用考點點評:本題考查了一元一次方程的應用,解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關系列出方程,再求解設停電x分鐘,則1-X/120=2(1-X/60)解得:x=40答:停電40分鐘或設停電x分鐘,則1-X(1/120)=21-X(1/60),1-(1/120)X=2-(1/30)X,120-X=240-4X,3X=120,x=40答:停電40分鐘小學經(jīng)典數(shù)學應用題(含答案解析)1.已知一張桌子的價錢是一把椅子的 10 倍,又知
29、一張桌子比一把椅子多 288 元,一張桌子和一把椅子各多少元?、想:由已知條件可知,一張桌子比一把椅子多的288元,正好是一把椅子價錢的(10-1)倍,由此可求得一把椅子的價錢.再根據(jù)椅子的價錢,就可求得一張桌子的價錢.一把椅子的價錢:288÷(10-1)=32(元)一張桌子的價錢:32×10=320(元)答:一張桌子320元,一把椅子32元.2.3 箱蘋果重 45 千克。一箱梨比一箱蘋果多 5 千克,3 箱梨重多少千克?想:可先求出3箱梨比3箱蘋果多的重量,再加上3箱蘋果的重量,就是3箱梨的重量.45+5×3=45+15=60(千克)答:3箱梨重60千克.3.甲
30、乙二人從兩地同時相對而行,經(jīng)過 4 小時,在距離中點 4 千米處相遇。甲比乙速度快,甲每小時比乙快多少千米?想:根據(jù)在距離中點4千米處相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知經(jīng)過4小時相遇.即可求甲比乙每小時快多少千米.4×2÷4=8÷4=2(千米)答:甲每小時比乙快2千米.4.李軍和張強付同樣多的錢買了同一種鉛筆,李軍要了 13 支,張強要了 7 支,李軍又給張強 0.6 元錢。每支鉛筆多少錢?想:根據(jù)兩人付同樣多的錢買同一種鉛筆和李軍要了13支,張強要了7支,可知每人應該得(13+7)÷2支,而李軍要了13支比應得的多了3支,因此又給張強0.6元錢,即可求每支鉛筆的價錢.÷13-(13+7)÷2÷13-20÷2÷3=0.2(元)答:每支鉛筆0.2元.5.甲乙兩輛客車上午 8 時同時從兩個車站出發(fā),相向而行,經(jīng)過一段時間,兩車同時到達一條河 的兩岸。由于河上的橋正在維修,車輛禁止通行,兩車需交換乘客,然后按原路返回各自出發(fā)的車站,到站時已是下午 2 點。甲車每小時行 40 千米,乙車每小時行 45 千米,兩地相距多少千米?(交換乘客的時間略去不計)、想:根據(jù)已知兩車上午8時從兩站出發(fā),下午2點返
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 倉鼠探究活動方案
- 仙女湖景點活動方案
- 代辦公司企業(yè)策劃方案
- 代言活動中秋節(jié)活動方案
- 代駕公司年會策劃方案
- 以班風促學風活動方案
- 儀征團建活動方案
- 任務沖刺活動方案
- 企業(yè)小型元旦活動方案
- 金昌市金川高級中學2025屆高三三模數(shù)學
- 太陽能電站運維服務方案
- UML期末復習題庫(便于打印版)
- 手術患者評估制度
- 廣聯(lián)達GTJ建模進階技能培訓
- 色卡-CBCC中國建筑標準色卡(千色卡1026色)
- DB11∕T 2000-2022 建筑工程消防施工質(zhì)量驗收規(guī)范
- 人臉識別門禁系統(tǒng)使用指南
- 酒店安全設施
- 水下機器人研究報告
- 建筑項目部考勤管理制度
- 中班健康課件《我不挑食》
評論
0/150
提交評論