八年級數(shù)學(xué)教學(xué)設(shè)計_第1頁
八年級數(shù)學(xué)教學(xué)設(shè)計_第2頁
八年級數(shù)學(xué)教學(xué)設(shè)計_第3頁
八年級數(shù)學(xué)教學(xué)設(shè)計_第4頁
八年級數(shù)學(xué)教學(xué)設(shè)計_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

VIP免費下載

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、八年級數(shù)學(xué)教學(xué)設(shè)計教學(xué)目標1.使學(xué)生會分析和判斷一個多項式是否為完全平方式,初步掌握運用完全平方式把多項式分解因式的方法;2.理解完全平方式的意義和特點,培養(yǎng)學(xué)生的判斷能力.3.進一步培養(yǎng)學(xué)生全面地觀察問題、分析問題和逆向思維的能力.4.通過運用公式法分解因式的教學(xué),使學(xué)生進一步體會“把一個代數(shù)式看作一個字母”的換元思想。教學(xué)重點和難點重點:運用完全平方式分解因式.難點:靈活運用完全平方公式公解因式.教學(xué)過程設(shè)計一、復(fù)習(xí)1.問:什么叫把一個多項式因式分解?我們已經(jīng)學(xué)習(xí)了哪些因式分解的方法?答:把一個多項式化成幾個整式乘積形式,叫做把這個多項式因式分解.我們學(xué)過的因式分解的方法有提取公因式法及運

2、用平方差公式法.2.把下列各式分解因式:(1)ax4-ax2 (2)16m4-n4.解 (1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)(2) 16m4-n4=(4m2)2-(n2)2=(4m2+n2)(4m2-n2)=(4m2+n2)(2m+n)(2m-n).問:我們學(xué)過的乘法公式除了平方差公式之外,還有哪些公式?答:有完全平方公式.請寫出完全平方公式.完全平方公式是:(a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2.這節(jié)課我們就來討論如何運用完全平方公式把多項式因式分解.二、新課和討論運用平方差公式把多項式因式分解的思路一樣,把完全平方公式反過來,

3、就得到a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2.這就是說,兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的兩個公式就是完全平方公式.運用這兩個式子,可以把形式是完全平方式的多項式分解因式.問:具備什么特征的多項是完全平方式?答:一個多項式如果是由三部分組成,其中的兩部分是兩個式子(或數(shù))的平方,并且這兩部分的符號都是正號,第三部分是上面兩個式子(或數(shù))的乘積的二倍,符號可正可負,像這樣的式子就是完全平方式.問:下列多項式是否為完全平方式?為什么?(1)x2+6x+9

4、; (2)x2+xy+y2;(3)25x4-10x2+1; (4)16a2+1.答:(1)式是完全平方式.因為x2與9分別是x的平方與3的平方,6x=2·x·3,所以x2+6x+9=(x+3) .(2)不是完全平方式.因為第三部分必須是2xy.(3)是完全平方式.25x =(5x ) ,1=1 ,10x =2·5x ·1,所以25x -10x +1=(5x-1) .(4)不是完全平方式.因為缺第三部分.請同學(xué)們用箭頭表示完全平方公式中的a,b與多項式9x2+6xy+y2中的對應(yīng)項,其中a=?b=?2ab=?答:完全平方公式為:其中a=3x,b=y,2ab

5、=2·(3x)·y.例1 把25x4+10x2+1分解因式.分析:這個多項式是由三部分組成,第一項“25x4”是(5x2)的平方,第三項“1”是1的平方,第二項“10x2”是5x2與1的積的2倍.所以多項式25x4+10x2+1是完全平方式,可以運用完全平方公式分解因式.解25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2.例2把1- m+ 分解因式.問:請同學(xué)分析這個多項式的特點,是否可以用完全平方公式分解因式?有幾種解法?答:這個多項式由三部分組成,第一項“1”是1的平方,第三項“ ”是 的平方,第二項“- m”是1與m/4

6、的積的2倍的相反數(shù),因此這個多項式是完全平方式,可以用完全平方公式分解因式.解法1 1- m+ =1-2·1· +( )2=(1- )2.解法2 先提出 ,則1- m+ = (16-8m+m2)= (42-2·4·m+m2)= (4-m)2.三、課堂練習(xí)(投影)1.填空:(1)x2-10x+()2=()2;(2)9x2+()+4y2=()2;(3)1-()+m2/9=()2.2.下列各多項式是不是完全平方式?如果是,可以分解成什么式子?如果不是,請把多項式改變?yōu)橥耆椒绞?(1)x2-2x+4;(2)9x2+4x+1;(3)a2-4ab+4b2;(4)9

7、m2+12m+4; (5)1-a+a2/4.3.把下列各式分解因式:(1)a2-24a+144;(2)4a2b2+4ab+1;(3)19x2+2xy+9y2; (4)14a2-ab+b2.答案:1.(1)25,(x-5) 2;(2)12xy,(3x+2y) 2;(3)2m/3,(1-m3)2.2.(1)不是完全平方式,如果把第二項的“-2x”改為“-4x”,原式就變?yōu)閤2-4x+4,它是完全平方式;或把第三項的“4”改為1,原式就變?yōu)閤2-2x+1,它是完全平方式.(2)不是完全平方式,如果把第二項“4x”改為“6x”,原式變?yōu)?x2+6x+1,它是完全平方式.(3)是完全平方式,a2-4ab

8、+4b2=(a-2b)2.(4)是完全平方式,9m2+12m+4=(3m+2) 2.(5)是完全平方式,1-a+a2/4=(1-a2)2.3.(1)(a-12) 2;(2)(2ab+1) 2;(3)(13x+3y) 2;(4)(12a-b)2.四、小結(jié)運用完全平方公式把一個多項式分解因式的主要思路與方法是:1.首先要觀察、分析和判斷所給出的多項式是否為一個完全平方式,如果這個多項式是一個完全平方式,再運用完全平方公式把它進行因式分解.有時需要先把多項式經(jīng)過適當(dāng)變形,得到一個完全平方式,然后再把它因式分解.2.在選用完全平方公式時,關(guān)鍵是看多項式中的第二項的符號,如果是正號,則用公式a2+2ab+b2=(a+b) 2;如果是負號,則用公式a2-2ab+b2=(a-b) 2.五、作業(yè)把下列各式分解因式:1.(1)a2+8a+16;(2)1-4t+4t2;(3)m2-14m+49; (4)y2+y+1/4.2.(1)25m2-80m+64; (2)4a2+36a+81;(3)4p2-20pq+25q2; (4)16-8xy+x2y2;(5)a2b2-4ab+4; (6)25a4-40a2b2+16b4.3.(1)m2n-2mn+1; (2)7am+1-14am+7am-1;4.(1) x -4x; (2)a5+a4+ a3.答案:1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論