



下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、 混合式教學模式在“線性代數”課堂的實踐 摘要:翻轉課堂是近年來極為流行的教學模式。在線性代數課堂中采用翻轉課堂教學模式,存在課前預習難以撐起課堂有效討論和學生容易產生畏難情緒的困難。結合同伴教學法和及時教學法的優點,在“線性代數”課堂上,教師可以采用混合式教學模式:要求學生課前在線完成預習題目,教師根據反饋設計課堂教學,課上以測試題方式開展討論,課后將拓展問題研討延伸至線上。實踐證明,混合式教學的課堂氣氛活躍,課堂討論熱烈,取得不錯的教學效果。關鍵詞:翻轉課堂,同伴教學法,及時教學法,混合式教學模式20世紀以來,隨著計算機科學的突飛猛進,線
2、性代數在各個研究領域的應用迅速增長。作為理工科院校的一門公共基礎課程,“線性代數對許多科學技術和工商領域的學生的重要性可說超過了大學其他數學課程”1。那么,如何在有限的課時中激發學生的內驅力,變被動輸入為主動探索?如何用線性代數龐雜的概念定理,構建出數值分析等后續課程的堅實基礎?這些問題的探索,無論對學生還是教師,都有著深遠的現實意義。一、研究背景時代的發展、科技的進步,給傳統課堂帶來了巨大挑戰。成長在智能時代的學生獲取知識的途徑多種多樣,不再局限于課堂;相當數量的學生都面臨著時間碎片化、注意力碎片化的學習問題;而同時,他們又都有著獨立的個性、開闊的視野,樂于嘗試并接受新生事物。在這樣的背景下
3、,無論是傳統課堂的危機,還是“以學生為中心”的教學理念,都在敦促廣大教育者做出變革。翻轉課堂是國內近年來極為流行的教育模式,即將教學任務中最容易的部分知識的傳遞移到課堂外讓學生自主學習,充分利用課堂上教師和學生之間、學生和學生之間面對面的機會進行積極的社會化的互動,實現深度學習,培養學生解決問題、創造性思維、高水平推理和批判性思維能力等教育目標。2同伴教學法(peer instruction)就是翻轉課堂教學模式中的一種,于20世紀90年代由哈佛大學教授埃里克·馬祖爾所開創,這種教學模式要求學生課前完成自學任務,在課上基于概念測試題讓學生相互討論,互教互學。3及時教學法(just-i
4、n-time teaching)4產生于20世紀末的美國,也屬于翻轉課堂的范疇,其倡導的模式是學生在網上完成課前閱讀教學任務,使教師可以及時得到反饋,并基于反饋有針對性地組織課堂。這些教學模式的改革在國內國際的實踐中都取得了良好的教學效果。但是,作為一門公共數學基礎課程,線性代數具有自己的特點。在線性代數的大班教學中,完全翻轉課堂存在一些困難。二、在線性代數課堂中采用翻轉課堂所存在的困難一方面,線性代數的概念定理繁多,其主要內容有行列式、矩陣、向量相關性、方程組、二次型,這些內容既獨立成章,同時又有著千絲萬縷的聯系,同一個問題往往可由多種角度切入。由于內容多,學生僅憑課前預習,對相關概念定理的
5、理解往往會流于表面,不能對所學內容形成系統的認知,因此難以撐起有效的課堂討論。同時,作為非數學專業學生的公共基礎課,線性代數的課時往往比較少,而容納的學生卻很多。全體學生在知識程度、學習風格、性格能力等方面存在的差異不容忽視,珍貴的課堂時間如果全部用來討論,難以深入透徹,個性化交互也會淪為空談。另一方面,成長在智能化時代的學生,本身就面臨著注意力碎片化的學習問題,時刻會被各種信息所干擾,他們面對抽象的數學課程,普遍會滋生畏難情緒。所謂“在課堂之外主動、自主、獨立地根據自己所需進行個性化的學習”往往只是個美好的愿望,尤其是畏難情緒會直接影響課堂討論的實施和效果。所以,完全意義上的翻轉課堂并不適用
6、于大班授課的線性代數,甚至會影響到課程的正常進展。于是筆者借鑒了翻轉課堂中的同伴教學法和及時教學法,借助互聯網平臺,嘗試了“部分翻轉”的混合式教學模式。三、以在線學習引領課堂教學的混合式教學模式同伴教學法的教學模式是課前設計閱讀任務單,指導學生課前自學;課堂內容按知識點分解,并圍繞知識點設計“概念測試題”,然后由學生先各自給出答案,相互討論后再次給出答案,教師則根據提交答案評估學生水平,進而組織教學,只講重點、難點和關鍵點。及時教學法的教學模式是充分利用網絡平臺,構建“預習問題”和“綜合難題”兩種模塊,通過預習問題的解答反饋,教師能夠及時掌握學生對即將開始的教學內容的理解程度和存在的問題,以便
7、及時調整課堂設計。另一方面,在課后完成“綜合難題”的過程中,學生能完成更高層次的探究學習。5,6兩種教學模式有著異曲同工之處,都是教師與學生形成有效及時的互動,在學生反饋的基礎之上,精心設計課堂教學,師生之間通力合作,最終實現高效的課程教學。筆者綜合了兩種教學法的優點,在線性代數的大班課堂采用混合式教學模式,以在線學習引領課堂教學。預習環節設置難度適當的測試題,通過題目引導學生自學;并通過及時反饋掌握學生對教學內容的理解程度和偏差疏漏,據此設計、組織課堂教學。教師圍繞預習測試中存在的問題展開課堂,在每個教學環節結束時推出課堂測試題,用以考查學生對該環節學習任務的完成度;并根據他們的及時反饋,做
8、進一步的展開和深入。課后教師可以整理講授過程中所提及的問題,將其發布于討論區,這既是對整個課堂的回顧,也是對課堂的線上延展。學生彼此討論互相促進,教師也能根據討論的進展,及時了解課堂效果并加以調整。以下舉例說明。線性方程組解的結構是線性代數中的重點也是難點,涉及自由未知量的選取和賦值、系數矩陣的秩、解集合的秩以及基礎解系等知識點。由于知識點多,相互關聯密切,而課堂時間有限,教師通常難以面面俱到。課堂教學開始前,通過網絡平臺發布以下預習題目:絕大多數學生都能求出該方程組的解,但有20%左右的人沒能正確找到解集合的秩(得分70以下),40%左右的人無法找到解集合的最大無關組(得分80以下)。學生答
9、案所反映的問題讓人驚訝:把最大無關組等同于秩;混淆了解集合與系數陣列向量的最大無關組;把最大無關組構成的矩陣記為最大無關組;等等。通過網絡平臺,教師在課前能及時得到以上反饋,而這些反饋在傳統課堂的課后作業中并不常見,針對這些問題進行課堂講授,更能切中要害。在齊次線性方程組解的結構分析完成之后,可以推出下面的測試題目,以考查學生對之前教學環節的掌握情況。例2已知a為m×n矩陣,且a的秩為n-1,1、2是ax=0的兩個不同的解向量,k是任意的常數,則ax=0的通解是( )。(a)k1;(b)k2;(c)k(1-2);(d)k(1+2).相當一部分的學生認為四個答案都有道理,進
10、而圍繞“最大無關組中只含一個向量”的問題展開課堂討論,不但加深了對無關性的理解,也對齊次方程組解的性質有了更加靈活的認識。課堂結束之后,在網絡平臺的討論區發布問題:“能否找出非齊次方程組解集合的秩,及其最大無關組?”引導學生進行更加深入的思考,把課堂討論延伸至線上。這是一個混合式教學課堂的片段,利用網絡平臺,充分體現了課堂效率和學習效率的優化。在這次教學改革實踐中,混合式教學的課堂氣氛活躍,課堂討論熱烈,線上互動也很頻繁。期末優秀率達到17.2%,優良率達到33.33%,取得不錯的教學成績。當我們辯證地去看待目前的課堂問題,不以學生對智能終端的依賴心理為中心,而以學生對教學內容的理解程度為中心
11、,不是為了去迎合碎片化的學習習慣,而是為了增強學習過程中的交互與合作,新的教學模式才可能得到踐行,學生的主動性和參與性才能得到真正的促進,課堂教學才能充滿活力。參考文獻:1david c. lay.線性代數及其應用m.劉深泉,等譯.北京:機械工業出版社,2006.2張萍,ding lin,張文碩.翻轉課堂的理念、演變與有效性研究j.教育學報,2017(1).3moore a j. fostering student engagement with the flipj. mathematics teacher,2014(6).4novak g m. just-in-time teachingj.american
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 文化創意產品研發資金申請2025年政策扶持與產業升級策略報告
- 2025年新能源汽車廢舊電池回收處理技術及案例分析報告
- 2025年生物科技行業可持續發展目標(SDGs)實踐與產業融合報告
- 煤炭清潔高效燃燒技術在煤炭洗選加工中的應用與發展報告
- 醫療器械臨床試驗質量管理與規范化2025年發展趨勢研究報告
- 2025年建筑信息模型(BIM)在施工全過程精細化管理中的應用策略報告
- 工業互聯網平臺量子密鑰分發技術在智慧醫療領域的應用與挑戰報告
- 2025年電商平臺內容營銷與種草經濟產業鏈研究報告
- 深度解析:2025年工業互聯網平臺AR交互技術在制造領域的應用創新報告
- 綠色環保產業資金申請政策變化與應對策略報告2025
- 數字頻率計的設計與實現課程設計
- 2024北京海淀區初一(下)期末生物試題和答案
- 《古文觀止解讀》課件
- 道德與法治三年級下冊知識點歸納
- 廣東省江門市2023-2024學年高二下學期7月期末考試 英語 含解析
- 臨床專業認證
- 醫美美學設計培訓
- 2024年中考模擬試卷物理(江蘇南通卷)
- 定額〔2025〕2號文-關于發布2020版電網技術改造及檢修工程概預算定額2024年下半年價格
- 2025年部編版道德與法治小學三年級下冊全冊教案(含教學計劃)
- 腸系膜上動脈夾層教學教材
評論
0/150
提交評論