




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
>Rethinkingthecoursetomanufacturing,sfuture2
Authors
PatrickVollmer
SeniorManagingDirector–GlobalIndustryGroupLeadIndustrials
EnnoDanke
ManagingDirector–IndustryX,ASGProduction&Operations,CapabilityandDelivery
organizationlead
MatthiasWahrendorff
SeniorPrincipal-Accenture
Research,GlobalIndustrialandTransport&LogisticsLead
StefanHattula
SeniorPrincipal–Accenture
Research,GlobalAutomotive&MobilityLead
JeffWheless
PrincipalDirector–Accenture
Research,GlobalIndustrialsandIndustryXLead
>Rethinkingthecoursetomanufacturing,sfuture3
Contents
Page4
Introduction:
Today’sopportunitytoshapethefutureofmanufacturing
Page12
What'sneedednow:
Automationto
unlockefficiencyandprecision
Page5
The2040vision:
hyper-automatedfactories
Page15
What'sneedednow:
AI-drivenoptimizationtoadvancefromassistancetoautonomy
Page8
What'sneedednow:
Workforcetransformationtopreserveandaugmentcriticalknowledge
Page18
What'sneedednow:
Digitalizationtosetthe
foundationforthefactoryofthefuture
Page23
Conclusion:
Frommanagingtoorchestrating
>Rethinkingthecoursetomanufacturing,sfuture4
Introduction
Today’sopportunitytoshapethefutureofmanufacturing
Whatwillthemostcompetitivefactorieslooklikein2040?Theanswerwon,tjustbedeterminedbycostefficiencyandqualitylevels;infact,highmarksonbotharetablestakes.Therealdifferentiatorswillbeflexibility,sustainability
andintelligence—qualitiesthatwillrestonafactory’sabilitytomovebeyondtraditionalautomationandembracetheseamlessconvergenceofadvancedrobotics,data,AIanddigitaltools.
Wecallthatstatehyper-automation.It’saviablegoal—infact,it’stheinevitablecompetitive
path,accordingtothe552factorymanagerswhorecentlyparticipatedinAccenture’sin-depth,globalsurvey(seebox,“OurMethodology,”fordetail).However,gettingtherewon’tbeeasy,asmostfactoriesfaceabatteryofchallenges,includingworkforceshortages,complexbrownfieldenvironmentsandslowadoptionofAI-drivenprocesses.
Tooutlinethebestpathforward,wedrewonoursurveyfindings,coupledwithourownclient
experience.Sincetheusualplanningperiodforfactoriesinoursurveyedindustriesisaboutfivetosevenyears,anythingbeyondthatisgenerallythoughtofasa“vision.”Takingthevisionof2040articulatedbyoursurveyrespondentsasourstartingpoint,wesetouttoclosethegapbetweenwhat’sintheirsightsinthenextfivetosevenyears,andwhat’sbeyondintermsofplanning
andactions.
Thisreportfollowsthatstructure.Thefirstmajorsectionarticulatesthe2040vision—what
thefactoryofthefuturecouldlooklike.Subsequently,itoutlinesguardrailsforthestepsthat
factorymanagersneedtotakeacrossfourareas:Workforce,Automation,AIoptimizationandDigitalization.Ineach,thekeyisbalancingnear-termeffortswiththefoundationalneedsfor
thefactoryofthefuture.
OurMethodology
Accenturesurveyed552experiencedfactorymanagers
andengaged15headsofproductionindetailedqualitativeinterviewsbetweenAugustandDecember2024.Those
takingpartinthesurveyandresearchrepresented
automotivemanufacturers,automotivesuppliers,
industrialmachinerymanufacturers,industrialequipmentmanufacturers,electricalequipmentmanufacturers,
heavyequipmentmanufacturers,commercialaerospacemanufacturersandcommercialaerospacesuppliers.Theresearchcoveredfactoriesranginginscalefrom100
workerstomorethan5,000,andfromlocationsintheUS,Europe,China,IndiaandJapan.
Wefocusedourresearchonfactorymanagersbecauseoftheirvantagepointandbecausetheyaretheultimate
arbitersofwhethertheirvisionofthefuturewillbecomeareality.Theseindividualsareresponsibleforinformingstrategiccorporatedecisionsandfortranslatingthose
decisionsintoreal-worldoperations.
CompanyexamplesthatarenotsourcedarebasedonAccentureclientexperience.
>Rethinkingthecoursetomanufacturing,sfuture5
The2040vision:
hyper-automatedfactories
Thetransformationofthemanufacturinglandscapebeganin
theeraofmechanizationmorethan200yearsago.Thedriver?
Technologicaladvances.Andinthatrespect,nothinghaschangedThroughmassproduction,automation(whichwenowseeaslimitedautomation),digitalizationandnowAI,technologyhasbeenthe
drivingforcebehindrevolutionarychange.
What’sdifferentnowisthatthespeedofchangehasaccelerated.
Now,evenascompaniesareadoptingAIandfiguringouthowto
deployittotheiradvantageintoday’sfactories,theymustthink
aheadtothenextrevolution,whichisalreadyinitsnascentstages
(seeFigure1).Thatmeansplanningforandaddressingallattendantconsiderations—includingtechnologyandtalentinvestments—
andthedigitalcore,thecriticaltechnologycapabilitythatdrives
continuousreinvention.Thisisessentialforsupportingtheirfactoriesoverthenextfiveyearswhilelayingthefoundationforthenext15.
The2040vision
Figure1:
Evenastoday’smanufacturingrevolutiontakesshape—enabledbyearlyforaysintogenAI—thenextwaveoffactorytechnologyadoptionisbeginning
HyperAutomation
AtifiilIntllig
Digitalization
Atmation
MssPdtion
Mhaition
AI
1784
1870
1969
10y
2030
2040
86y99y42y201119y
Source:Accenture
The2040vision
Rethinkingthecoursetomanufacturing,sfuture6
By2040,ifcompaniesdothis,theirfactorieswilllookstunninglydifferentthantheydonow.Theywillbeself-optimizingandAI-driven,seamlesslyintegratingrobotics,digitaltwinsandhumanoversightintoanintelligentandhyper-automatedproductionecosystem.Assuch,theywillbeabletodomuchmorethanexecuteprocessesatscale.Theywillalsoanticipatedisruptions,adaptdynamicallyandoptimizeproduction,withnear-completeautonomy,inrealtime(seeFigure2).
51%
45%
Figure2:
Keyelementsofa
hyper-automatedfactory
53%
Automated
guidedvehicles(AGV)1
Autonomous
operations(I5.0)1
Completelyautomatedwarehouses1
48%
Digitally
connectedcrews1
52%
49%
49%
GenAI-based
self-learningmachines1
47%
Digital
operationstwin1
Autonomous
mobilerobots(AMR)1
Smartandconnectedmanufacturingcells1
Note1:Percentageoffactorymanagerswhoratedtheseelementsasan“8,9,
or10”onascalefrom1to10,with1
meaning“veryunlikely”and10meaning“extremelylikely’tobeimplemented
by2040.N=552;thefullhypothesesformulationcanbefoundonPage26.Source:AccentureResearchanalysis
The2040vision
>Rethinkingthecoursetomanufacturing,sfuture7
Broadlyspeaking,theenablersofthehyper-automatedfactorysortintofour
areas:workforce,automation,AI-drivenoptimizationanddigitalization.Factorymanagersunderstandtheseenablerswell.Thechallengeisturningthat
understandingintoactionsthatservethemwellinthecurrentenvironment
andalsosupporttheirlonger-termvision,especiallygiventhatvolatilityand
uncertaintywillcertainlycompoundby2040.Doingthiswillrequirerethinking
howfactoriesoperate,howtechnologyisdeployed,andhowpeopleand
machinesworktogether.Itwillrequiretakingboldstepsnowtoreskillthe
workforce,scaleintelligentautomation,embedAIintodecision-making,andfullyembracedigitalizationasthebackboneofmodernmanufacturing.
8
Rethinkingthecoursetomanufacturing,sfuture
WHAT'SNEEDEDNOW:
Workforce transformationtopreserveandaugmentcriticalknowledge
Asignificantmajority(70%)ofthefactorymanagersthatAccenturesurveyedconsiderworkforce
transformationasthemostcriticalfactorforsuccess.They’reright.Thetalentpoolformanufacturersisrapidlyshrinking.Experiencedworkersareapproachingandenteringretirement.Anddemographicchanges,alongwithyoungertalentshowinglessandlessinclinationtopursuecareersin
manufacturing,arelimitingthesupplyofnewworkers.IntheUSalone,forinstance,analystsestimatethatby2033,therewillbeamanufacturingskillsgapequivalentto3.8millionjobs.1
Nowonderthenthatfactorymanagersrateknowledgemanagement,embeddingdataanalyticsintodailyworkflowsandenablingdata-drivendecision-makingastheirtopfocusareas.
TheseactivitiesarealreadykeytoAI-drivenchange,andtheywillalsobecriticaltorealizingthe
2040vision.Yetexecutingonthemisprovingextremelychallenging.Oneissue?Thecostoftraining.Almosthalf(49%)ofoursurveyrespondentsconsidertheinvestmentintrainingasamajorhurdle.
Yetinvestingintrainingpeopleistheonlywaytorealizethefullbenefitsofthetechnology.
Workforcetransformationtopreserveandaugmentcriticalknowledge
Anotherissue?Employeeengagement.Accenture’sglobal2024
studyonchangefound,70%ofemployeesdon’tfeelengaged
inorganizationalchange.2Inpart,that’sbecausetheylackan
understandingofhowtheirworkcontributestothefuture.Butitalsocorrelatestothefearthatinhelpingthecompanyimplementnew
technologies,theyareworkingthemselvesoutofajob.Despitethe
loomingskillsgap,almosthalf(46%)ofoursurveyrespondentssaidworkersworrythatasautomationexpands,theirassemblylineroleswillbecomeobsolete.Figure3showsfactorymanagers’topprioritiesforsuccessinthenear-term(fiveyearsout),andtheirtopbarriers.It’scriticalthatcompaniesaddressthebarriersnow,notonlyforthenear-termbutalsoforthe2040vision.Factorieswillneedahighlyskilledworkforce,albeitskilleddifferently.
So,companiesneedtoidentifyandcommunicatefutureemploymentopportunitiesnow,andprovidepathwaystothoseopportunities.
Moreover,theywillneedtosetupanewmodelfortalentdevelopmentthatsupportscontinuous,real-timetraining.Mostofthefactory
workforceofthefuturewillmoveawayfromworkinginproduction
towardsworkingforproduction,whichmeanstheywillmovefrom
manuallabortoprocessoversight,decision-makingandoptimization.Theseindividualsmustalsoengageinacyclewherebytheyboth
learnfromandwithAIandteachAI,asthenatureoftheworkevolves.TheywillneedtobecomfortablecollaboratingwithAI,operating
autonomoussystemsandoverseeingcomplexautomationprocesses.
Figure3:
Factorymanagers’near-termprioritiesandlimitationsregardingworkforcetransformation
Top5prioritizedworkforcetransformationmeasures1
74%
73%
72%
72%
ProductionknowledgemanagementDataanalyticsindaytodayworkDatadrivendecisionmaking
71%
FosteringacultureofcontinuouslearningDigitalcompetenciestraining
Top5limitationsofworkforcetransformationmeasures2
49%
46%
38%
SignificantinvestmentintrainingFearsofjoblosses
Resistancetoadaptingtoexpandedroles
34%
Attractingnewtalent
32%
Workersareoverburdenedbydigitalliteracydemands
Note1:Percentageoffactorymanagerswhorated“8,9or10”onascalefrom1to10,with(1)standingfor“notatallimportant”and(10)for“extremelyimportant”.N=552
Note2:Percentageoffactorymanagerswhoselectedaspecificlimitation
Source:AccentureResearchanalysis
>Rethinkingthecoursetomanufacturing,sfuture9
Workforcetransformationtopreserveandaugmentcriticalknowledge
>Rethinkingthecoursetomanufacturing,sfuture10
Takeproductionoperations.Thejobsofthefuturewilllikelyincludehyper-automation
systemintegratorsanddigitalprocessorchestrators.Peoplewillneedtooverseede-
centralized,AI-drivenproductionnetworks,optimizereal-timeprocesses,andtroubleshootintegrationissues.Anotheremergingposition:TheAI-supportedroboticsengineer.This
personwilldesignandmaintainAI-drivenroboticmachinesandassemblylines.
Meanwhile,inqualitycontrolandassurance,jobswilllikelyincludequalityintelligence
specialists,whouseAI-drivenanalytics,InternetofThings(IoT)-sensorsandreal-time
monitoringtoensureproductintegrity,compliance,andprocessoptimization.Figure4
showsavarietyofjobsandresponsibilitiesasweenvisionthemnowacrosstheseareasaswellasmaintenance,repairandoverhaul.
Alsoneeded:arangeoflogisticsandsupplychain,andstrategicmanagementandIT
integrationroles,callingforskillsincludingstrategicplanning,AIoptimization,blockchain,real-timedataanalytics,networkcoordination,cybersecurityanddigitaltransformation.Andtheseroles,too,willevolve.
Onecompanyexhibitingthekindoffuturefocusneededtoachievethe2040vision?UK-basedautomakerJLR,holdingcompanyofJaguarLandRover.JLRhascommittedtoinvesting$25millionannuallytohelpemployeesinproductionrolesgainthenewtechnologyskillsandcapabilitiesthey’llneedtopivottonewrolesinthefuture.3
Nowisapivotaltimetothinkdifferentlyaboutthefutureofworkandtheworkforce.
Workforcetransformationtopreserveandaugmentcriticalknowledge
Figure4:
Asamplesetofjobprofilesandkeyskillsneededinthehyper-automatedfactory
ProductionOperations
QualityControl&Assurance
Logistics&SupplyChain
Maintenance,Repair,Overhaul
Management&ITIntegration
Category
Futurejobprofiles
DigitalLogisticsSpecialists:
Manageautonomouswarehousing,AI-drivensupplychains,and
blockchain-optimizeddistribution.
SmartMaintenanceSpecialists:
Usereal-timeIoTdataandpredictivediagnosticstomanagesystemhealthandpreventissues.
Cyber-PhysicalSystemsSpecialist:Developspredictivemaintenance
systemsforindustrialautomation.
QualityIntelligenceSpecialists:
UseAl-drivenanalytics,loTsensors,andreal-timemonitoringtoensureproductintegrity,compliance,andprocessoptimization.
Cyber-PhysicalSystemsSpecialist:Integratessensornetworks,digital
twins,andAl-baseddecision-makingtoautomatequalitycontrolacrossproductionlines.
AutonomousQualityControlInspector:
ManagesAI-poweredmachinevisionsystemsthatdetectmicroscopic
DigitalTransformationExecutives:Drivehyper-automation,IT
integration,cybersecurity,andcontinuousinnovation.
FactoryCybersecuritySpecialist:Securesfactorydatanetworksandimplementscybersecurityfor
Hyper-automationSystem
Integrators&DigitalProcessOrchestrators:
Overseedecentralized,AI-drivenproductionnetworks,optimizereal-timeperformance,and
troubleshootintegrationissues.
AutonomousLogisticsCoordinator:Optimizesself-drivingfactory
logisticsandwarehouseautomation.
AI-poweredRoboticsEngineer:
DesignsandmaintainsAI-driven
roboticmachinesandassemblylines.
automationinfrastructure.
AugmentedReality(AR)MaintenanceTechnician:
Conductsvirtualtroubleshootingandmachinelearning-based
maintenance.
HolographicInterfaceDesigner:
Createsholographicdashboardsforproductionmonitoringanddevelopsreal-timeinteractivefactorycontrolsystems.
Real-timeProductionOptimizationEngineer:
Responsibleforcontinuously
monitoringandimproving
automatedproductionprocessestomaximizeefficiency,minimizewaste,andenhanceOverallEquipment
Effectiveness(OEE).
Cyber-PhysicalSystemsSpecialist:Integratesandmanagessmart
factoryIoTanddigitaltwins.
defectsinproductsatultra-highspeeds.
PredictiveQualityAnalyst:
Developsandimplementspredictiveanalyticsmodelstoforecastpotentialfailuresbeforetheyoccur,preventingdefectiveoutputs.
Human-RobotCollaborationManager:
Developsprotocolsforhumanandmachineco-workingenvironments.
BionicEnhancementSpecialist:
DevelopsAI-poweredexosuitsforenhancedworkercapabilities.
AI-drivenProductionPlanner:
Ensureseamlesscoordinationof
manufacturingprocessesusing
AI-drivenproductionschedulingandreal-timeoptimization.
KeySkills&Drivers
?AI-basedprocessoptimization
?Roboticsintegration
?Real-timemonitoring
?Systemstroubleshooting
?Advancedanalytics
?IoTsensorintegration
?Predictivequalitycontrol
?Auditmanagement
?PredictiveMROanalytics
?IoTdiagnostics
?Remotemonitoring
?Automationtroubleshooting
?Autonomouslogistics
?AIoptimization
?Blockchain
?Real-timedataanalytics
?Networkcoordination
?Strategicleadership
?ITintegration
?Cybersecurity
?Digitaltransformation
?Innovationmanagement
Source:AccentureResearchAnalysis
>Rethinkingthecoursetomanufacturing,sfuture11
12
Rethinkingthecoursetomanufacturing,sfuture
WHAT'SNEEDEDNOW:
Automationtounlockefficiencyandprecision
Asignificantmajority(63%)offactorymanagersareprioritizingautomationinthemid-
term,whichisnotsurprisinggiventheimmediateopportunitiesthatautomationoffersto
improveefficiencyandreducecosts.However,onlyabout60%ofthefactorymanagersare
alsoprioritizingkeyinnovationssuchasautonomousguidedvehicles(AGVs),transforming
intralogisticsandmaterialhandlingandautonomousmobilerobots(AMRs),whichtheywill
needtofulfilltheir2040vision.Indeed,despitetheir2040vision,just38%aretargetingthe
hyper-automatedfactoryastheirpreferredconceptwhenbuildingnewunits.Thevastmajorityareprioritizinglessergoals,suchasautomatedwarehouses,synchronizedinrealtimewith
manufacturingprocesses.Alltogether,thisdatarevealsasignificantconflictbetweentoday’sprioritiesand2040’scompetitiveneeds.
Figure5illustratesthisconflict.Fromlefttoright,itshowstraditionalfactories,whatfactorymanagerscanachievebyfocusingonnear-termgains,andtwotypesofhyper-automated
factories:brownfieldandgreenfield.Thehigherthedegreeofadvancement,thebetterthe
factorywillbeabletosecureresilient,sustainable,andprofitablemanufacturinginthefuture.Thegraphicusespluses(+)torepresentperformancelevels,frombasic(+)toexcellent(++++),withexcellentrepresentingfuture-readiness.
Figure5:Automationtounlockefficiencyandprecision
Thehyper-automationadvantage
KPI
Traditionalfactory
Optimized
human-integratedfactory
Hyper-automatedbrownfieldfactory
Hyper-automatedgreenfieldfactory
Description
Aproductionmodelrelying
primarilyonhumanlaborwith
minimalintegrationof
automatedsystems.Operationsaremanuallydriven,with
workersperformingtasks.
Ahybridapproachwhere
automationisintegratedinto
workflowstocomplementhuman
roles.Automationhandlesmost
repetitivetasks,whilehumansfocusonoversightandcomplex
decision-making.
AnexistingfactoryupgradedwithAIandhumanoidrobots.
Automationisintroducedinto
pre-existinginfrastructures,
enablingamixoflegacysystemsandmoderntechnologies.
Afacility/linebuiltspecificallyfor
hyperautomation,leveraging
advancedAIsystems.Thedesign
incorporatesDesignforManufacturingprinciples,withallprocessesoptimizedforautonomousoperations.
Automationlevel
10%-30%
50%-70%
upto100%
upto100%
Flexibility
++++
++
+++
++++
Productivity
+
++
+++
++++
Quality
+
++
+++
++++
Costefficiency
+
++
++++
++++
Investment
$
$$
$$$
$$$$
Source:AccentureResearch
It’stimeforcompaniestoalignvisionwithaction,beginningbyscopingoutinmoredetailtheirjourneytothefactoryofthefuture..Tothatend,wehaveidentifiedfivekeymodelsonwhichahyper-automatedfactorymightbebased:
Themassfactory:Fullyautomatedandfullydigitizedproductionlines,whichcreatehighlystandardizedproductsinmasswithlittleorno
variation.
Themodularfactory:Fixedproductionlineequippedwithindependent,interchangeableAMRmodulesthatseamlesslyadapttoefficiently
manufacturepartiallytailoredproductswithmaximumthroughput.
Thematrixfactory:Productiontakesplaceinflexible,independentcells,allowingmultipleproductionpathsinsteadofafixedsequence,which
reducesbottlenecksandenablesproductionofcustomizedproductswithoutneedingtoredesignthefactory.
Themachine-to-productfactory:Highlyrelevantmodelforlarge
dimensionalproducts—here,specializedAMRsandhumanoidrobotsconvergetoworkontheassemblyofasingleproductonsite.
Theworkshopfactory:Produceshighlycustomizedproductsinsmallbatchesorevenlot-sizeone;characterizedbyflexible,workshop-styleproductionprocessesacceleratedthroughadvancedautomationandhumanoidrobots.
>Rethinkingthecoursetomanufacturing,sfuture13
Automationtounlockefficiencyandprecision
>Rethinkingthecoursetomanufacturing,sfuture14
Ultimately,thenatureandvariabilityofproductsandtheextentofcustomizationwilldrive
acompany’schoiceofmodel.Inanycasethough,selectingtherightpathmeansfirst
determiningwhethertransformingexistingfacilities(brownfieldapproach)orinvestinginnewfactories(greenfieldapproach)willofferthemosteconomicallyviableapproach.Andinall
cases,whileafactoryfloorcouldbefullyautomated,peoplewillcontinuetoplaycriticalroles(justnowemerging)inorchestrating,overseeing,supportingandmaintainingitsoperations.
Consider:Itwilllikelyprovemorecost-effectivetoupgradeandretrofitestablished
infrastructureswithwell-maintainedfacilitiesusingAIandhumanoidrobots,ratherthanbuildingentirelynewproductionlinesfromscratch.Infact,earlyadoptersintheautomotiveindustryarealreadytestinghumanoidrobots’potential,withpositiveresults.SeveralautomotiveOEMsin
Chinahaveachievednear-100%automationintheirbodyshopsusinghumanoidrobots.NIO4has300robots—operatedbyonlyadozenworkers—andisabletoproduce20vehiclesper
hour.Xpeng5Motorshas264intelligentindustrialrobotsworkingfullyautonomouslyacrossitsstamping,welding,painting,assemblyandbattery-packproductionworkshops.
MeanwhileBMW6deployedahumanoidrobotcalled“Figure02”atitsSpartanburgplant,
afterwhichthecompanyreporteda400%boostinefficiency.AndSchaeffler7hasinvestedinAgilityRoboticsandseesthepotentialtodeployitsDigithumanoidrobotsacrossitsglobalmanufacturingnetworkof100plantsby2030toautomatetasksphysicallydemanding,
repetitiveorhazardous.(Figure6illustratesthegrowingcapabilitiesofhumanoidrobots.)
Challengessuchasspeed,cost,andintegrationcomplexityremain,andcurrently,fewerthanhalfofoursurveyrespondents(43%)overall,seehumanoidrobotsbecomingacost-efficientstandardinassembly.However,amongrespondentsinlargefactories,thatfigurejumpsto
58%.Andit’sinterestingtonotethattheseviewsvarygeographically,with63%managersin
India,65%inChinaand72%inJapanconsideringhumanoidrobotsvaluableformanufacturingassemblylines,comparedto35%inUSand21%inEurope.Ultimately,humanoidrobotshavesignificantpotentialtobecomeastapleofmainstreammanufacturing.
Figure6:
Humanoidrobots’growingcapabilities
AIControl&Perception
Training&Validation
High
DexterityTasks
Realand
SyntheticData
Integration
Hardware(DexterityofHand+Sensors)
Source:Accenture
15
Rethinkingthecoursetomanufacturing,sfuture
WHAT'SNEEDEDNOW:
AI-drivenoptimizationto advancefrom assistancetoautonomy
Asizeablenumber(62%)offactorymanagersconsiderAIasakeyen
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)農(nóng)耕活動方案
- 對老人獻(xiàn)愛心活動方案
- 家教禮儀活動方案
- 實體門店引流活動方案
- 室內(nèi)團(tuán)隊diy活動方案
- 家宴圈層活動方案
- 宣城新港文旅城活動方案
- 宜春溫泉跨年活動方案
- 射箭積分活動方案
- 家長交流分享活動方案
- 2024年貴州省納雍縣事業(yè)單位公開招聘中小學(xué)教師35名筆試題帶答案
- 采購管理 關(guān)于印發(fā)《中國聯(lián)通采購管理辦法》的通知學(xué)習(xí)資料
- 正畸器械知識培訓(xùn)課件
- 2025年師德師風(fēng)知識競賽題庫(含參考答案)
- 安裝倉庫燈具協(xié)議書
- 河道養(yǎng)護(hù)工作總結(jié)
- 2025年中質(zhì)協(xié)注冊質(zhì)量經(jīng)理認(rèn)證考試題庫大全(含答案)
- 電纜敷設(shè)施工方案及安全措施完整
- 南京科遠(yuǎn)KD200變頻器使用手冊
- 生產(chǎn)部門員工的技能進(jìn)階及相應(yīng)激勵機(jī)制設(shè)計
- WEF -2025全球燈塔網(wǎng)絡(luò):全球燈塔網(wǎng)絡(luò) 推動思維轉(zhuǎn)變 數(shù)字轉(zhuǎn)型中的影響和規(guī)模 轉(zhuǎn)變白皮書
評論
0/150
提交評論