2024屆江蘇省無錫市天一實驗學校十校聯考最后數學試題含解析_第1頁
2024屆江蘇省無錫市天一實驗學校十校聯考最后數學試題含解析_第2頁
2024屆江蘇省無錫市天一實驗學校十校聯考最后數學試題含解析_第3頁
2024屆江蘇省無錫市天一實驗學校十校聯考最后數學試題含解析_第4頁
2024屆江蘇省無錫市天一實驗學校十校聯考最后數學試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆江蘇省無錫市天一實驗學校十校聯考最后數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖在△ABC中,AC=BC,過點C作CD⊥AB,垂足為點D,過D作DE∥BC交AC于點E,若BD=6,AE=5,則sin∠EDC的值為()A. B. C. D.2.如圖,△ABC中,若DE∥BC,EF∥AB,則下列比例式正確的是()A. B.C. D.3.《語文課程標準》規定:7﹣9年級學生,要求學會制訂自己的閱讀計劃,廣泛閱讀各種類型的讀物,課外閱讀總量不少于260萬字,每學年閱讀兩三部名著.那么260萬用科學記數法可表示為()A.26×105 B.2.6×102 C.2.6×106 D.260×1044.去年二月份,某房地產商將房價提高40%,在中央“房子是用來住的,不是用來炒的”指示下達后,立即降價30%.設降價后房價為x,則去年二月份之前房價為()A.(1+40%)×30%x B.(1+40%)(1﹣30%)xC. D.5.如圖,菱形ABCD的對角線交于點O,AC=8cm,BD=6cm,則菱形的高為()A.cm B.cm C.cm D.cm6.如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AB=c,∠A=α,則CD長為()A.c?sin2α B.c?cos2α C.c?sinα?tanα D.c?sinα?cosα7.如圖,是半圓的直徑,點、是半圓的三等分點,弦.現將一飛鏢擲向該圖,則飛鏢落在陰影區域的概率為()A. B. C. D.8.如圖,水平的講臺上放置的圓柱體筆筒和正方體粉筆盒,其左視圖是()A. B.C. D.9.某微生物的直徑為0.000005035m,用科學記數法表示該數為()A.5.035×10﹣6 B.50.35×10﹣5 C.5.035×106 D.5.035×10﹣510.估算的值是在()A.2和3之間 B.3和4之間 C.4和5之間 D.5和6之間11.如圖1、2、3分別表示甲、乙、丙三人由A地到B地的路線圖,已知甲的路線為:A→C→B;乙的路線為:A→D→E→F→B,其中E為AB的中點;丙的路線為:A→I→J→K→B,其中J在AB上,且AJ>JB.若符號[→]表示[直線前進],則根據圖1、圖2、圖3的數據,判斷三人行進路線長度的大小關系為()A.甲=乙=丙 B.甲<乙<丙 C.乙<丙<甲 D.丙<乙<甲12.拋物線y=ax2﹣4ax+4a﹣1與x軸交于A,B兩點,C(x1,m)和D(x2,n)也是拋物線上的點,且x1<2<x2,x1+x2<4,則下列判斷正確的是()A.m<n B.m≤n C.m>n D.m≥n二、填空題:(本大題共6個小題,每小題4分,共24分.)13.從﹣2,﹣1,2這三個數中任取兩個不同的數相乘,積為正數的概率是_____.14.計算:=_____________.15.對于實數,我們用符號表示兩數中較小的數,如.因此,________;若,則________.16.如圖,已知,D、E分別是邊BA、CA延長線上的點,且如果,,那么AE的長為______.17.如圖,在平面直角坐標系中,函數y=(k>0)的圖象經過點A(1,2)、B兩點,過點A作x軸的垂線,垂足為C,連接AB、BC.若三角形ABC的面積為3,則點B的坐標為___________.18.為了節約用水,某市改進居民用水設施,在2017年幫助居民累計節約用水305000噸,將數字305000用科學記數法表示為________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知關于x,y的二元一次方程組的解為,求a、b的值.20.(6分)如圖,在Rt△ABC中,CD,CE分別是斜邊AB上的高,中線,BC=a,AC=b.若a=3,b=4,求DE的長;直接寫出:CD=(用含a,b的代數式表示);若b=3,tan∠DCE=,求a的值.21.(6分)如圖,△ABC中,AB=AC=4,D、E分別為AB、AC的中點,連接CD,過E作EF∥DC交BC的延長線于F;(1)求證:DE=CF;(2)若∠B=60°,求EF的長.22.(8分)為響應國家“厲行節約,反對浪費”的號召,某班一課外活動小組成員在全校范圍內隨機抽取了若干名學生,針對“你每天是否會節約糧食”這個問題進行了調查,并將調查結果分成三組(A.會;B.不會;C.有時會),繪制了兩幅不完整的統計圖(如圖)(1)這次被抽查的學生共有______人,扇形統計圖中,“A組”所對應的圓心度數為______;(2)補全兩個統計圖;(3)如果該校學生共有2000人,請估計“每天都會節約糧食”的學生人數;(4)若不節約零食造成的浪費,按平均每人每天浪費5角錢計算,小江認為,該校學生一年(365天)共將浪費:2000×20%×0.5×365=73000(元),你認為這種說法正確嗎?并說明理由.23.(8分)校車安全是近幾年社會關注的重大問題,安全隱患主要是超速和超載,某中學數學活動小組設計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道l上確定點D,使CD與l垂直,測得CD的長等于24米,在l上點D的同側取點A、B,使∠CAD=30°,∠CBD=60°.求AB的長(結果保留根號);已知本路段對校車限速為45千米/小時,若測得某輛校車從A到B用時1.5秒,這輛校車是否超速?說明理由.(參考數據:≈1.7,≈1.4)24.(10分)如圖,AB是半圓O的直徑,點P是半圓上不與點A,B重合的動點,PC∥AB,點M是OP中點.(1)求證:四邊形OBCP是平行四邊形;(2)填空:①當∠BOP=時,四邊形AOCP是菱形;②連接BP,當∠ABP=時,PC是⊙O的切線.25.(10分)某商場購進一批30瓦的LED燈泡和普通白熾燈泡進行銷售,其進價與標價如下表:LED燈泡普通白熾燈泡進價(元)4525標價(元)6030(1)該商場購進了LED燈泡與普通白熾燈泡共300個,LED燈泡按標價進行銷售,而普通白熾燈泡打九折銷售,當銷售完這批燈泡后可獲利3200元,求該商場購進LED燈泡與普通白熾燈泡的數量分別為多少個?(2)由于春節期間熱銷,很快將兩種燈泡銷售完,若該商場計劃再次購進這兩種燈泡120個,在不打折的情況下,請問如何進貨,銷售完這批燈泡時獲利最多且不超過進貨價的30%,并求出此時這批燈泡的總利潤為多少元?26.(12分)如圖,半圓D的直徑AB=4,線段OA=7,O為原點,點B在數軸的正半軸上運動,點B在數軸上所表示的數為m.當半圓D與數軸相切時,m=.半圓D與數軸有兩個公共點,設另一個公共點是C.①直接寫出m的取值范圍是.②當BC=2時,求△AOB與半圓D的公共部分的面積.當△AOB的內心、外心與某一個頂點在同一條直線上時,求tan∠AOB的值.27.(12分)隨著互聯網的發展,同學們的學習習慣也有了改變,一些同學在做題遇到困難時,喜歡上網查找答案.針對這個問題,某校調查了部分學生對這種做法的意見(分為:贊成、無所謂、反對),并將調查結果繪制成圖1和圖2兩個不完整的統計圖.請根據圖中提供的信息,解答下列問題:此次抽樣調查中,共調查了多少名學生?將圖1補充完整;求出扇形統計圖中持“反對”意見的學生所在扇形的圓心角的度數;根據抽樣調查結果,請你估計該校1500名學生中有多少名學生持“無所謂”意見.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

由等腰三角形三線合一的性質得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE∥BC知AC=2AE=10,∠EDC=∠BCD,再根據正弦函數的概念求解可得.【詳解】∵△ABC中,AC=BC,過點C作CD⊥AB,∴AD=DB=6,∠BDC=∠ADC=90°,∵AE=5,DE∥BC,∴AC=2AE=10,∠EDC=∠BCD,∴sin∠EDC=sin∠BCD=,故選:A.【點睛】本題主要考查解直角三角形,解題的關鍵是熟練掌握等腰三角形三線合一的性質和平行線的性質及直角三角形的性質等知識點.2、C【解析】

根據平行線分線段成比例定理找準線段的對應關系,對各選項分析判斷后利用排除法求解.【詳解】解:∵DE∥BC,∴=,BD≠BC,∴≠,選項A不正確;∵DE∥BC,EF∥AB,∴=,EF=BD,=,∵≠,∴≠,選項B不正確;∵EF∥AB,∴=,選項C正確;∵DE∥BC,EF∥AB,∴=,=,CE≠AE,∴≠,選項D不正確;故選C.【點睛】本題考查了平行線分線段成比例定理;熟練掌握平行線分線段成比例定理,在解答時尋找對應線段是關健.3、C【解析】

科學記數法的表示形式為的形式,其中,n為整數確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同當原數絕對值時,n是正數;當原數的絕對值時,n是負數.【詳解】260萬=2600000=.故選C.【點睛】此題考查科學記數法的表示方法科學記數法的表示形式為的形式,其中,n為整數,表示時關鍵要正確確定a的值以及n的值.4、D【解析】

根據題意可以用相應的代數式表示出去年二月份之前房價,本題得以解決.【詳解】由題意可得,去年二月份之前房價為:x÷(1﹣30%)÷(1+40%)=,故選:D.【點睛】本題考查了列代數式,解答本題的關鍵是明確題意,列出相應的代數式.5、B【解析】試題解析:∵菱形ABCD的對角線根據勾股定理,設菱形的高為h,則菱形的面積即解得即菱形的高為cm.故選B.6、D【解析】

根據銳角三角函數的定義可得結論.【詳解】在Rt△ABC中,∠ACB=90°,AB=c,∠A=a,根據銳角三角函數的定義可得sinα=,∴BC=c?sinα,∵∠A+∠B=90°,∠DCB+∠B=90°,∴∠DCB=∠A=α在Rt△DCB中,∠CDB=90°,∴cos∠DCB=,∴CD=BC?cosα=c?sinα?cosα,故選D.7、D【解析】

連接OC、OD、BD,根據點C,D是半圓O的三等分點,推導出OC∥BD且△BOD是等邊三角形,陰影部分面積轉化為扇形BOD的面積,分別計算出扇形BOD的面積和半圓的面積,然后根據概率公式即可得出答案.【詳解】解:如圖,連接OC、OD、BD,∵點C、D是半圓O的三等分點,∴,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD,∴△COD是等邊三角形,∴OC=OD=CD,∵,∴,∵OB=OD,∴△BOD是等邊三角形,則∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD,∴,∴S陰影=S扇形OBD,S半圓O,飛鏢落在陰影區域的概率,故選:D.【點睛】本題主要考查扇形面積的計算和幾何概率問題:概率=相應的面積與總面積之比,解題的關鍵是把求不規則圖形的面積轉化為求規則圖形的面積.8、C【解析】

根據左視圖是從物體的左面看得到的視圖解答即可.【詳解】解:水平的講臺上放置的圓柱形筆筒和正方體形粉筆盒,其左視圖是一個含虛線的長方形,故選C.【點睛】本題考查的是幾何體的三視圖,左視圖是從物體的左面看得到的視圖.9、A【解析】試題分析:0.000005035m,用科學記數法表示該數為5.035×10﹣6,故選A.考點:科學記數法—表示較小的數.10、C【解析】

求出<<,推出4<<5,即可得出答案.【詳解】∵<<,∴4<<5,∴的值是在4和5之間.故選:C.【點睛】本題考查了估算無理數的大小和二次根式的性質,解此題的關鍵是得出<<,題目比較好,難度不大.11、A【解析】分析:由角的度數可以知道2、3中的兩個三角形的對應邊都是平行的,所以圖2,圖3中的三角形都和圖1中的三角形相似.而且圖2三角形全等,圖3三角形相似.詳解:根據以上分析:所以圖2可得AE=BE,AD=EF,DE=BE.∵AE=BE=AB,∴AD=EF=AC,DE=BE=BC,∴甲=乙.圖3與圖1中,三個三角形相似,所以====.∵AJ+BJ=AB,∴AI+JK=AC,IJ+BK=BC,∴甲=丙.∴甲=乙=丙.故選A.點睛:本題考查了的知識點是平行四邊形的性質,解答本題的關鍵是利用相似三角形的平移,求得線段的關系.12、C【解析】分析:將一般式配方成頂點式,得出對稱軸方程根據拋物線與x軸交于兩點,得出求得距離對稱軸越遠,函數的值越大,根據判斷出它們與對稱軸之間的關系即可判定.詳解:∵∴此拋物線對稱軸為∵拋物線與x軸交于兩點,∴當時,得∵∴∴故選C.點睛:考查二次函數的圖象以及性質,開口向上,距離對稱軸越遠的點,對應的函數值越大,二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

首先根據題意列出表格,然后由表格即可求得所有等可能的結果與積為正數的情況,再利用概率公式求解即可求得答案.【詳解】列表如下:﹣2﹣12﹣22﹣4﹣12﹣22﹣4﹣2由表可知,共有6種等可能結果,其中積為正數的有2種結果,所以積為正數的概率為,故答案為.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數與總情況數之比.14、【解析】分析:按單項式乘以多項式的法則將括號去掉,在合并同類項即可.詳解:原式=.故答案為:.點睛:熟記整式乘法和加減法的相關運算法則是正確解答這類題的關鍵.15、2或-1.【解析】①∵--,∴min{-,-}=-;②∵min{(x?1)2,x2}=1,∴當x>0.5時,(x?1)2=1,∴x?1=±1,∴x?1=1,x?1=?1,解得:x1=2,x2=0(不合題意,舍去),當x?0.5時,x2=1,解得:x1=1(不合題意,舍去),x2=?1,16、【解析】

由DE∥BC不難證明△ABC△ADE,再由,將題中數值代入并根據等量關系計算AE的長.【詳解】解:由DE∥BC不難證明△ABC△ADE,∵,CE=4,∴,解得:AE=故答案為.【點睛】本題考查了相似三角形的判定和性質,熟記三角形的判定和性質是解題關鍵.17、(4,).【解析】

由于函數y=(x>0常數k>0)的圖象經過點A(1,1),把(1,1)代入解析式求出k=1,然后得到AC=1.設B點的橫坐標是m,則AC邊上的高是(m-1),根據三角形的面積公式得到關于m的方程,從而求出,然后把m的值代入y=,即可求得B的縱坐標,最后就求出了點B的坐標.【詳解】∵函數y=(x>0、常數k>0)的圖象經過點A(1,1),∴把(1,1)代入解析式得到1=,∴k=1,設B點的橫坐標是m,則AC邊上的高是(m-1),∵AC=1∴根據三角形的面積公式得到×1?(m-1)=3,∴m=4,把m=4代入y=,∴B的縱坐標是,∴點B的坐標是(4,).故答案為(4,).【點睛】解答本題的關鍵是根據已知坐標系中點的坐標,可以表示圖形中線段的長度.根據三角形的面積公式即可解答.18、【解析】試題解析:305000用科學記數法表示為:故答案為三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、或【解析】

把代入二元一次方程組得到關于a,b的方程組,經過整理,得到關于b的一元二次方程,解之即可得到b的值,把b的值代入一個關于a,b的二元一次方程,求出a的值,即可得到答案.【詳解】把代入二元一次方程組得:,

由①得:a=1+b,

把a=1+b代入②,整理得:

b2+b-2=0,

解得:b=-2或b=1,

把b=-2代入①得:a+2=1,

解得:a=-1,

把b=1代入①得:

a-1=1,

解得:a=2,

即或.【點睛】本題考查了二元一次方程組的解,正確掌握代入法是解題的關鍵.20、(1);(2);(3).【解析】

(1)求出BE,BD即可解決問題.(2)利用勾股定理,面積法求高CD即可.(3)根據CD=3DE,構建方程即可解決問題.【詳解】解:(1)在Rt△ABC中,∵∠ACB=91°,a=3,b=4,∴.∵CD,CE是斜邊AB上的高,中線,∴∠BDC=91°,.∴在Rt△BCD中,(2)在Rt△ABC中,∵∠ACB=91°,BC=a,AC=b,故答案為:.(3)在Rt△BCD中,,∴,又,∴CD=3DE,即.∵b=3,∴2a=9﹣a2,即a2+2a﹣9=1.由求根公式得(負值舍去),即所求a的值是.【點睛】本題考查解直角三角形的應用,直角三角形斜邊中線的性質,勾股定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.21、證明見解析;.【解析】

根據兩組對邊分別平行的四邊形是平行四邊形即可證明;只要求出CD即可解決問題.【詳解】證明:、E分別是AB、AC的中點,又四邊形CDEF為平行四邊形.,,又為AB中點,在中,,,四邊形CDEF是平行四邊形,.【點睛】本題考查平行四邊形的判定和性質、勾股定理、三角形的中位線定理等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.22、(1)50,108°(2)見解析;(3)600人;(4)不正確,見解析.【解析】

(1)由C組人數及其所占百分比可得總人數,用360°乘以A組人數所占比例可得;(2)根據百分比之和為1求得A組百分比補全圖1,總人數乘以B的百分比求得其人數即可補全圖2;(3)總人數乘以樣本中A所占百分比可得;(4)由樣本中浪費糧食的人數所占比例不是20%即可作出判斷.【詳解】(1)這次被抽查的學生共有25÷50%=50人,扇形統計圖中,“A組”所對應的圓心度數為360°×=108°,故答案為50、108°;(2)圖1中A對應的百分比為1-20%-50%=30%,圖2中B類別人數為50×20%=5,補全圖形如下:(3)估計“每天都會節約糧食”的學生人數為2000×30%=600人;(4)不正確,因為在樣本中浪費糧食的人數所占比例不是20%,所以這種說法不正確.【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.同時本題還考查了通過樣本來估計總體.23、(1);(2)此校車在AB路段超速,理由見解析.【解析】

(1)結合三角函數的計算公式,列出等式,分別計算AD和BD的長度,計算結果,即可.(2)在第一問的基礎上,結合時間關系,計算速度,判斷,即可.【詳解】解:(1)由題意得,在Rt△ADC中,tan30°==,解得AD=24.在Rt△BDC中,tan60°==,解得BD=8所以AB=AD﹣BD=24﹣8=16(米).(2)汽車從A到B用時1.5秒,所以速度為16÷1.5≈18.1(米/秒),因為18.1(米/秒)=65.2千米/時>45千米/時,所以此校車在AB路段超速.【點睛】考查三角函數計算公式,考查速度計算方法,關鍵利用正切值計算方法,計算結果,難度中等.24、(1)見解析;(2)①120°;②45°【解析】

(1)由AAS證明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出結論;

(2)①證出OA=OP=PA,得出△AOP是等邊三角形,∠A=∠AOP=60°,得出∠BOP=120°即可;

②由切線的性質和平行線的性質得出∠BOP=90°,由等腰三角形的性質得出∠ABP=∠OPB=45°即可.【詳解】(1)∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵點M是OP的中點,∴OM=PM,在△CPM和△AOM中,,∴△CPM≌△AOM(AAS),∴PC=OA.∵AB是半圓O的直徑,∴OA=OB,∴PC=OB.又PC∥AB,∴四邊形OBCP是平行四邊形.(2)①∵四邊形AOCP是菱形,∴OA=PA,∵OA=OP,∴OA=OP=PA,∴△AOP是等邊三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案為120°;②∵PC是⊙O的切線,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案為45°.【點睛】本題是圓的綜合題目,考查了全等三角形的判定與性質、平行四邊形的判定、切線的性質、菱形的判定與性質、等邊三角形的判定與性質等知識;本題綜合性強,熟練掌握切線的性質和平行四邊形的判定是解題的關鍵.25、(1)LED燈泡與普通白熾燈泡的數量分別為200個和100個;(2)1350元.【解析】

1)設該商場購進LED燈泡x個,普通白熾燈泡的數量為y個,利用該商場購進了LED燈泡與普通白熾燈泡共300個和銷售完這批燈泡后可以獲利3200元列方程組,然后解方程組即可;

(2)設該商場購進LED燈泡a個,則購進普通白熾燈泡(120-a)個,這批燈泡的總利潤為W元,利用利潤的意義得到W=(60-45)a+(30-25)(120-a)=10a+1,再根據銷售完這批燈泡時獲利最多且不超過進貨價的30%可確定a的范圍,然后根據一次函數的性質解決問題.【詳解】(1)設該商場購進LED燈泡x個,普通白熾燈泡的數量為y個.根據題意,得解得答:該商場購進LED燈泡與普通白熾燈泡的數量分別為200個和100個.(2)設該商場再次購進LED燈泡a個,這批燈泡的總利潤為W元.則購進普通白熾燈泡(120﹣a)個.根據題意得W=(60﹣45)a+(30﹣25)(120﹣a)=10a+1.∵10a+1≤[45a+25(120﹣a)]×30%,解得a≤75,∵k=10>0,∴W隨a的增大而增大,∴a=75時,W最大,最大值為1350,此時購進普通白熾燈泡(120﹣75)=45個.答:該商場再次購進LED燈泡75個,購進普通白熾燈泡45個,這批燈泡的總利潤為1350元.【點睛】本題考查了二元一次方程組和一次函數的應用,根據實際問題找到等量關系列方程組和建立一次函數模型,利用一次函數的性質和自變量的取值范圍解決最值問題是解題的關鍵.26、(1);(2)①;②△AOB與半圓D的公共部分的面積為;(3)tan∠AOB的值為或.【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論