




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆四川省成都市青羊區重點達標名校中考數學最后沖刺模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.計算6m6÷(-2m2)3的結果為()A. B. C. D.2.已知O為圓錐的頂點,M為圓錐底面上一點,點P在OM上.一只蝸牛從P點出發,繞圓錐側面爬行,回到P點時所爬過的最短路線的痕跡如圖所示.若沿OM將圓錐側面剪開并展開,所得側面展開圖是()A. B.C. D.3.如圖,點A、B、C在圓O上,若∠OBC=40°,則∠A的度數為()A.40° B.45° C.50° D.55°4.如圖,將△ABE向右平移2cm得到△DCF,如果△ABE的周長是16cm,那么四邊形ABFD的周長是(
)A.16cm B.18cm C.20cm D.21cm5.一元二次方程x2﹣8x﹣2=0,配方的結果是()A.(x+4)2=18 B.(x+4)2=14 C.(x﹣4)2=18 D.(x﹣4)2=146.如圖,某小區計劃在一塊長為31m,寬為10m的矩形空地上修建三條同樣寬的道路,剩余的空地上種植草坪,使草坪的面積為570m1.若設道路的寬為xm,則下面所列方程正確的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5707.下列各式計算正確的是()A.a4?a3=a12 B.3a?4a=12a C.(a3)4=a12 D.a12÷a3=a48.如圖,已知E,B,F,C四點在一條直線上,,,添加以下條件之一,仍不能證明≌的是A. B. C. D.9.有理數a,b在數軸上的對應點如圖所示,則下面式子中正確的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①② B.①④ C.②③ D.③④10.如圖,△ABC是等腰直角三角形,∠A=90°,BC=4,點P是△ABC邊上一動點,沿B→A→C的路徑移動,過點P作PD⊥BC于點D,設BD=x,△BDP的面積為y,則下列能大致反映y與x函數關系的圖象是()A.B.C.D.二、填空題(共7小題,每小題3分,滿分21分)11.將多項式因式分解的結果是.12.已知方程的一個根為1,則的值為__________.13.如圖,數軸上不同三點對應的數分別為,其中,則點表示的數是__________.14.因式分解:____________.15.如圖,A、B、C是⊙O上的三點,若∠C=30°,OA=3,則弧AB的長為______.(結果保留π)16.已知袋中有若干個小球,它們除顏色外其它都相同,其中只有2個紅球,若隨機從中摸出一個,摸到紅球的概率是,則袋中小球的總個數是_____17.計算兩個兩位數的積,這兩個數的十位上的數字相同,個位上的數字之和等于1.53×57=3021,38×32=1216,84×86=7224,71×79=2.(1)你發現上面每個數的積的規律是:十位數字乘以十位數字加一的積作為結果的千位和百位,兩個個位數字相乘的積作為結果的,請寫出一個符合上述規律的算式.(2)設其中一個數的十位數字為a,個位數字為b,請用含a,b的算式表示這個規律.三、解答題(共7小題,滿分69分)18.(10分)如圖,在平行四邊形ABCD中,過點A作AE⊥DC,垂足為點E,連接BE,點F為BE上一點,連接AF,∠AFE=∠D.(1)求證:∠BAF=∠CBE;(2)若AD=5,AB=8,sinD=.求證:AF=BF.19.(5分)許昌芙蓉湖位于許昌市水系建設總體規劃中部,上游接納清泥河來水,下游為鹿鳴湖等水系供水,承擔著承上啟下的重要作用,是利用有限的水資源、形成良好的水生態環境打造生態宜居城市的重要部分.某校課外興趣小組想測量位于芙蓉湖兩端的A,B兩點之間的距離他沿著與直線AB平行的道路EF行走,走到點C處,測得∠ACF=45°,再向前走300米到點D處,測得∠BDF=60°.若直線AB與EF之間的距離為200米,求A,B兩點之間的距離(結果保留一位小數)20.(8分)某調查小組采用簡單隨機抽樣方法,對某市部分中小學生一天中陽光體育運動時間進行了抽樣調查,并把所得數據整理后繪制成如下的統計圖:(1)該調查小組抽取的樣本容量是多少?(2)求樣本學生中陽光體育運動時間為1.5小時的人數,并補全占頻數分布直方圖;(3)請估計該市中小學生一天中陽光體育運動的平均時間.21.(10分)為了響應“足球進校園”的目標,某校計劃為學校足球隊購買一批足球,已知購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元.求A,B兩種品牌的足球的單價.求該校購買20個A品牌的足球和2個B品牌的足球的總費用.22.(10分)如圖,△ABC內接于⊙O,∠B=600,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.(1)求證:PA是⊙O的切線;(2)若PD=,求⊙O的直徑.23.(12分)如圖①,AB是⊙O的直徑,CD為弦,且AB⊥CD于E,點M為上一動點(不包括A,B兩點),射線AM與射線EC交于點F.(1)如圖②,當F在EC的延長線上時,求證:∠AMD=∠FMC.(2)已知,BE=2,CD=1.①求⊙O的半徑;②若△CMF為等腰三角形,求AM的長(結果保留根號).24.(14分)為了貫徹落實市委政府提出的“精準扶貧”精神,某校特制定了一系列幫扶A、B兩貧困村的計劃,現決定從某地運送152箱魚苗到A、B兩村養殖,若用大小貨車共15輛,則恰好能一次性運完這批魚苗,已知這兩種大小貨車的載貨能力分別為12箱/輛和8箱/輛,其運往A、B兩村的運費如表:車型目的地A村(元/輛)B村(元/輛)大貨車800900小貨車400600(1)求這15輛車中大小貨車各多少輛?(2)現安排其中10輛貨車前往A村,其余貨車前往B村,設前往A村的大貨車為x輛,前往A、B兩村總費用為y元,試求出y與x的函數解析式.(3)在(2)的條件下,若運往A村的魚苗不少于100箱,請你寫出使總費用最少的貨車調配方案,并求出最少費用.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】分析:根據冪的乘方計算法則求出除數,然后根據同底數冪的除法法則得出答案.詳解:原式=,故選D.點睛:本題主要考查的是冪的計算法則,屬于基礎題型.明白冪的計算法則是解決這個問題的關鍵.2、D【解析】
此題運用圓錐的性質,同時此題為數學知識的應用,由題意蝸牛從P點出發,繞圓錐側面爬行,回到P點時所爬過的最短,就用到兩點間線段最短定理.【詳解】解:蝸牛繞圓錐側面爬行的最短路線應該是一條線段,因此選項A和B錯誤,又因為蝸牛從p點出發,繞圓錐側面爬行后,又回到起始點P處,那么如果將選項C、D的圓錐側面展開圖還原成圓錐后,位于母線OM上的點P應該能夠與母線OM′上的點(P′)重合,而選項C還原后兩個點不能夠重合.故選D.點評:本題考核立意相對較新,考核了學生的空間想象能力.3、C【解析】
根據等腰三角形的性質和三角形內角和定理求得∠BOC=100°,再利用圓周角定理得到∠A=12【詳解】∵OB=OC,
∴∠OBC=∠OCB.
又∠OBC=40°,
∴∠OBC=∠OCB=40°,
∴∠BOC=180°-2×40°=100°,
∴∠A=12【點睛】考查了圓周角定理.在同圓或等圓中,一條弧所對的圓周角是它所對的圓心角的一半.4、C【解析】試題分析:已知,△ABE向右平移2cm得到△DCF,根據平移的性質得到EF=AD=2cm,AE=DF,又因△ABE的周長為16cm,所以AB+BC+AC=16cm,則四邊形ABFD的周長=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案選C.考點:平移的性質.5、C【解析】x2-8x=2,
x2-8x+16=1,
(x-4)2=1.
故選C.【點睛】本題考查了解一元二次方程-配方法:將一元二次方程配成(x+m)2=n的形式,再利用直接開平方法求解,這種解一元二次方程的方法叫配方法.6、A【解析】六塊矩形空地正好能拼成一個矩形,設道路的寬為xm,根據草坪的面積是570m1,即可列出方程:(31?1x)(10?x)=570,故選A.7、C【解析】
根據同底數冪的乘法,可判斷A、B,根據冪的乘方,可判斷C,根據同底數冪的除法,可判斷D.【詳解】A.a4?a3=a7,故A錯誤;B.3a?4a=12a2,故B錯誤;C.(a3)4=a12,故C正確;D.a12÷a3=a9,故D錯誤.故選C.【點睛】本題考查了同底數冪的除法,同底數冪的除法底數不變指數相減是解題的關鍵.8、B【解析】
由EB=CF,可得出EF=BC,又有∠A=∠D,本題具備了一組邊、一組角對應相等,為了再添一個條件仍不能證明△ABC≌△DEF,那么添加的條件與原來的條件可形成SSA,就不能證明△ABC≌△DEF了.【詳解】添加,根據AAS能證明≌,故A選項不符合題意.B.添加與原條件滿足SSA,不能證明≌,故B選項符合題意;C.添加,可得,根據AAS能證明≌,故C選項不符合題意;D.添加,可得,根據AAS能證明≌,故D選項不符合題意,故選B.【點睛】本題考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.9、B【解析】分析:本題是考察數軸上的點的大小的關系.解析:由圖知,b<0<a,故①正確,因為b點到原點的距離遠,所以|b|>|a|,故②錯誤,因為b<0<a,所以ab<0,故③錯誤,由①知a-b>a+b,所以④正確.故選B.10、B【解析】解:過A點作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=12BC=2,當0≤x≤2時,如圖1,∵∠B=45°,∴PD=BD=x,∴y=12?x?x=當2<x≤4時,如圖2,∵∠C=45°,∴PD=CD=4﹣x,∴y=12?(4﹣x)?x=-二、填空題(共7小題,每小題3分,滿分21分)11、m(m+n)(m﹣n).【解析】試題分析:原式==m(m+n)(m﹣n).故答案為:m(m+n)(m﹣n).考點:提公因式法與公式法的綜合運用.12、1【解析】
欲求m,可將該方程的已知根1代入兩根之積公式和兩根之和公式列出方程組,解方程組即可求出m值.【詳解】設方程的另一根為x1,又∵x=1,∴,解得m=1.故答案為1.【點睛】本題的考點是一元二次方程的根的分布與系數的關系,主要考查利用韋達定理解題.此題也可將x=1直接代入方程3x2-9x+m=0中求出m的值.13、1【解析】
根據兩點間的距離公式可求B點坐標,再根據絕對值的性質即可求解.【詳解】∵數軸上不同三點A、B、C對應的數分別為a、b、c,a=-4,AB=3,∴b=3+(-4)=-1,∵|b|=|c|,∴c=1.故答案為1.【點睛】考查了實數與數軸,絕對值,關鍵是根據兩點間的距離公式求得B點坐標.14、3(x-2)(x+2)【解析】
先提取公因式3,再根據平方差公式進行分解即可求得答案.注意分解要徹底.【詳解】原式=3(x2﹣4)=3(x-2)(x+2).故答案為3(x-2)(x+2).【點睛】本題考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式進行二次分解,注意分解要徹底.15、π【解析】∵∠C=30°,∴∠AOB=60°,∴.即的長為.16、8個【解析】
根據概率公式結合取出紅球的概率即可求出袋中小球的總個數.【詳解】袋中小球的總個數是:2÷=8(個).故答案為8個.【點睛】本題考查了概率公式,根據概率公式算出球的總個數是解題的關鍵.17、(1)十位和個位,44×46=2024;(2)10a(a+1)+b(1﹣b)【解析】分析:(1)、根據題意得出其一般性的規律,從而得出答案;(2)、利用代數式表示出其一般規律得出答案.詳解:(1)由已知等式知,每個數的積的規律是:十位數字乘以十位數字加一的積作為結果的千位和百位,兩個個位數字相乘的積作為結果的十位和個位,例如:44×46=2024,(2)(1a+b)(1a+1﹣b)=10a(a+1)+b(1﹣b).點睛:本題主要考查的是規律的發現與整理,屬于基礎題型.找出一般性的規律是解決這個問題的關鍵.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)2.【解析】
(1)根據相似三角形的判定,易證△ABF∽△BEC,從而可以證明∠BAF=∠CBE成立;(2)根據銳角三角函數和三角形的相似可以求得AF的長【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∠AFE=∠D,∴∠C=∠AFB,∴△ABF∽△BEC,∴∠BAF=∠CBE;(2)∵AE⊥DC,AD=5,AB=8,sin∠D=,∴AE=4,DE=3∴EC=5∵AE⊥DC,AB∥DC,∴∠AED=∠BAE=90°,在Rt△ABE中,根據勾股定理得:BE=∵BC=AD=5,由(1)得:△ABF∽△BEC,∴==即==解得:AF=BF=2【點睛】本題考查相似三角形的判定與性質、平行四邊形的性質、解直角三角形,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答19、215.6米.【解析】
過A點做EF的垂線,交EF于M點,過B點做EF的垂線,交EF于N點,根據Rt△ACM和三角函數求出CM、DN,然后根據即可求出A、B兩點間的距離.【詳解】解:過A點做EF的垂線,交EF于M點,過B點做EF的垂線,交EF于N點在Rt△ACM中,∵,∴AM=CM=200米,又∵CD=300米,所以米,在Rt△BDN中,∠BDF=60°,BN=200米∴米,∴米即A,B兩點之間的距離約為215.6米.【點睛】本題主要考查三角函數,正確做輔助線是解題的關鍵.20、(4)500;(4)440,作圖見試題解析;(4)4.4.【解析】
(4)利用0.5小時的人數除以其所占比例,即可求出樣本容量;(4)利用樣本容量乘以4.5小時的百分數,即可求出4.5小時的人數,畫圖即可;(4)計算出該市中小學生一天中陽光體育運動的平均時間即可.【詳解】解:(4)由題意可得:0.5小時的人數為:400人,所占比例為:40%,∴本次調查共抽樣了500名學生;(4)4.5小時的人數為:500×4.4=440(人),如圖所示:(4)根據題意得:=4.4,即該市中小學生一天中陽光體育運動的平均時間為4.4小時.考點:4.頻數(率)分布直方圖;4.扇形統計圖;4.加權平均數.21、(1)一個A品牌的足球需90元,則一個B品牌的足球需100元;(2)1.【解析】
(1)設一個A品牌的足球需x元,則一個B品牌的足球需y元,根據“購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元”列出方程組并解答;(2)把(1)中的數據代入求值即可.【詳解】(1)設一個A品牌的足球需x元,則一個B品牌的足球需y元,依題意得:,解得:.答:一個A品牌的足球需40元,則一個B品牌的足球需100元;(2)依題意得:20×40+2×100=1(元).答:該校購買20個A品牌的足球和2個B品牌的足球的總費用是1元.考點:二元一次方程組的應用.22、(1)見解析(2)2【解析】解:(1)證明:連接OA,∵∠B=600,∴∠AOC=2∠B=1.∵OA=OC,∴∠OAC=∠OCA=2.又∵AP=AC,∴∠P=∠ACP=2.∴∠OAP=∠AOC﹣∠P=3.∴OA⊥PA.∵OA是⊙O的半徑,∴PA是⊙O的切線.(2)在Rt△OAP中,∵∠P=2,∴PO=2OA=OD+PD.又∵OA=OD,∴PD=OA.∵PD=,∴2OA=2PD=2.∴⊙O的直徑為2..(1)連接OA,根據圓周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=2,再由AP=AC得出∠P=2,繼而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,從而得出結論.(2)利用含2的直角三角形的性質求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直徑.23、(1)詳見解析;(2)2;②1或【解析】
(1)想辦法證明∠AMD=∠ADC,∠FMC=∠ADC即可解決問題;(2)①在Rt△OCE中,利用勾股定理構建方程即可解決問題;②分兩種情形討論求解即可.【詳解】解:(1)證明:如圖②中,連接AC、AD.∵AB⊥CD,∴CE=ED,∴AC=AD,∴∠ACD=∠ADC,∵∠AMD=∠ACD,∴∠AMD=∠ADC,∵∠FMC+∠AMC=110°,∠AMC+∠ADC=110°,∴∠FMC=∠ADC,∴∠FMC=∠ADC,∴∠FMC=∠AMD.(2)解:①如圖②﹣1中,連接OC.設⊙O的半徑為r.在Rt△OCE中,∵OC2=O
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論