




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆北京市昌平區臨川育人學校高考最后沖刺模擬(一)數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知條件,條件直線與直線平行,則是的()A.充要條件 B.必要不充分條件 C.充分不必要條件 D.既不充分也不必要條件2.已知函數(表示不超過x的最大整數),若有且僅有3個零點,則實數a的取值范圍是()A. B. C. D.3.已知命題,;命題若,則,下列命題為真命題的是()A. B. C. D.4.已知等比數列滿足,,等差數列中,為數列的前項和,則()A.36 B.72 C. D.5.已知為定義在上的偶函數,當時,,則()A. B. C. D.6.已知函數()的部分圖象如圖所示.則()A. B.C. D.7.《九章算術》勾股章有一“引葭赴岸”問題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問水深,葭各幾何?”,其意思是:有一個直徑為一丈的圓柱形水池,池中心生有一顆類似蘆葦的植物,露出水面兩尺,若把它引向岸邊,正好與岸邊齊,問水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機取一點,則該點取自水下的概率為()A. B. C. D.8.已知平面向量,滿足,,且,則()A.3 B. C. D.59.若P是的充分不必要條件,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件10.明代數學家程大位(1533~1606年),有感于當時籌算方法的不便,用其畢生心血寫出《算法統宗》,可謂集成計算的鼻祖.如圖所示的程序框圖的算法思路源于其著作中的“李白沽酒”問題.執行該程序框圖,若輸出的的值為,則輸入的的值為()A. B. C. D.11.已知復數z,則復數z的虛部為()A. B. C.i D.i12.如圖所示程序框圖,若判斷框內為“”,則輸出()A.2 B.10 C.34 D.98二、填空題:本題共4小題,每小題5分,共20分。13.等邊的邊長為2,則在方向上的投影為________.14.某城市為了解該市甲、乙兩個旅游景點的游客數量情況,隨機抽取了這兩個景點20天的游客人數,得到如下莖葉圖:由此可估計,全年(按360天計算)中,游客人數在內時,甲景點比乙景點多______天.15.已知命題:,,那么是__________.16.已知,橢圓的方程為,雙曲線方程為,與的離心率之積為,則的漸近線方程為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)若曲線存在與軸垂直的切線,求的取值范圍.(2)當時,證明:.18.(12分)如圖,在四棱錐中,四邊形為正方形,平面,點是棱的中點,,.(1)若,證明:平面平面;(2)若三棱錐的體積為,求二面角的余弦值.19.(12分)在中,角的對邊分別為,且,.(1)求的值;(2)若求的面積.20.(12分)我國在貴州省平塘縣境內修建的500米口徑球面射電望遠鏡(FAST)是目前世界上最大單口徑射電望遠鏡.使用三年來,已發現132顆優質的脈沖星候選體,其中有93顆已被確認為新發現的脈沖星,脈沖星是上世紀60年代天文學的四大發現之一,脈沖星就是正在快速自轉的中子星,每一顆脈沖星每兩脈沖間隔時間(脈沖星的自轉周期)是-定的,最小小到0.0014秒,最長的也不過11.765735秒.某-天文研究機構觀測并統計了93顆已被確認為新發現的脈沖星的自轉周期,繪制了如圖的頻率分布直方圖.(1)在93顆新發現的脈沖星中,自轉周期在2至10秒的大約有多少顆?(2)根據頻率分布直方圖,求新發現脈沖星自轉周期的平均值.21.(12分)設數列是公差不為零的等差數列,其前項和為,,若,,成等比數列.(1)求及;(2)設,設數列的前項和,證明:.22.(10分)中國古代數學經典《數書九章》中,將底面為矩形且有一條側棱與底面垂直的四棱錐稱為“陽馬”,將四個面都為直角三角形的四面體稱之為“鱉臑”.在如圖所示的陽馬中,底面ABCD是矩形.平面,,,以的中點O為球心,AC為直徑的球面交PD于M(異于點D),交PC于N(異于點C).(1)證明:平面,并判斷四面體MCDA是否是鱉臑,若是,寫出它每個面的直角(只需寫出結論);若不是,請說明理由;(2)求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
先根據直線與直線平行確定的值,進而即可確定結果.【詳解】因為直線與直線平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要條件.故選C【點睛】本題主要考查充分條件和必要條件的判定,熟記概念即可,屬于基礎題型.2、A【解析】
根據[x]的定義先作出函數f(x)的圖象,利用函數與方程的關系轉化為f(x)與g(x)=ax有三個不同的交點,利用數形結合進行求解即可.【詳解】當時,,當時,,當時,,當時,,若有且僅有3個零點,則等價為有且僅有3個根,即與有三個不同的交點,作出函數和的圖象如圖,當a=1時,與有無數多個交點,當直線經過點時,即,時,與有兩個交點,當直線經過點時,即時,與有三個交點,要使與有三個不同的交點,則直線處在過和之間,即,故選:A.【點睛】利用函數零點的情況求參數值或取值范圍的方法(1)直接法:直接根據題設條件構建關于參數的不等式,再通過解不等式確定參數的范圍;(2)分離參數法:先將參數分離,轉化成求函數的值域(最值)問題加以解決;(3)數形結合法:先對解析式變形,在同一平面直角坐標系中,畫出函數的圖象,然后數形結合求解.3、B【解析】解:命題p:?x>0,ln(x+1)>0,則命題p為真命題,則¬p為假命題;取a=﹣1,b=﹣2,a>b,但a2<b2,則命題q是假命題,則¬q是真命題.∴p∧q是假命題,p∧¬q是真命題,¬p∧q是假命題,¬p∧¬q是假命題.故選B.4、A【解析】
根據是與的等比中項,可求得,再利用等差數列求和公式即可得到.【詳解】等比數列滿足,,所以,又,所以,由等差數列的性質可得.故選:A【點睛】本題主要考查的是等比數列的性質,考查等差數列的求和公式,考查學生的計算能力,是中檔題.5、D【解析】
判斷,利用函數的奇偶性代入計算得到答案.【詳解】∵,∴.故選:【點睛】本題考查了利用函數的奇偶性求值,意在考查學生對于函數性質的靈活運用.6、C【解析】
由圖象可知,可解得,利用三角恒等變換化簡解析式可得,令,即可求得.【詳解】依題意,,即,解得;因為所以,當時,.故選:C.【點睛】本題主要考查了由三角函數的圖象求解析式和已知函數值求自變量,考查三角恒等變換在三角函數化簡中的應用,難度一般.7、C【解析】
由題意知:,,設,則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,,設,則在中,列勾股方程得:,解得所以從該葭上隨機取一點,則該點取自水下的概率為故選C.【點睛】本題考查了幾何概型中的長度型,屬于基礎題.8、B【解析】
先求出,再利用求出,再求.【詳解】解:由,所以,,,故選:B【點睛】考查向量的數量積及向量模的運算,是基礎題.9、B【解析】
試題分析:通過逆否命題的同真同假,結合充要條件的判斷方法判定即可.由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據互為逆否命題的等價性知,“若q則”為真,“若則q”為假,故選B.考點:邏輯命題10、C【解析】
根據程序框圖依次計算得到答案.【詳解】,;,;,;,;,此時不滿足,跳出循環,輸出結果為,由題意,得.故選:【點睛】本題考查了程序框圖的計算,意在考查學生的理解能力和計算能力.11、B【解析】
利用復數的運算法則、虛部的定義即可得出【詳解】,則復數z的虛部為.故選:B.【點睛】本題考查了復數的運算法則、虛部的定義,考查了推理能力與計算能力,屬于基礎題.12、C【解析】
由題意,逐步分析循環中各變量的值的變化情況,即可得解.【詳解】由題意運行程序可得:,,,;,,,;,,,;不成立,此時輸出.故選:C.【點睛】本題考查了程序框圖,只需在理解程序框圖的前提下細心計算即可,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
建立直角坐標系,結合向量的坐標運算求解在方向上的投影即可.【詳解】建立如圖所示的平面直角坐標系,由題意可知:,,,則:,,且,,據此可知在方向上的投影為.【點睛】本題主要考查平面向量數量積的坐標運算,向量投影的定義與計算等知識,意在考查學生的轉化能力和計算求解能力.14、72【解析】
根據給定的莖葉圖,得到游客人數在內時,甲景點共有7天,乙景點共有3天,進而求得全年中,甲景點比乙景點多的天數,得到答案.【詳解】由題意,根據給定的莖葉圖可得,在隨機抽取了這兩個景點20天的游客人數中,游客人數在內時,甲景點共有7天,乙景點共有3天,所以在全年)中,游客人數在內時,甲景點比乙景點多天.故答案為:.【點睛】本題主要考查了莖葉圖的應用,其中解答中熟記莖葉圖的基本知識,合理推算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.15、真命題【解析】
由冪函數的單調性進行判斷即可.【詳解】已知命題:,,因為在上單調遞增,則,所以是真命題,故答案為:真命題【點睛】本題主要考查了判斷全稱命題的真假,屬于基礎題.16、【解析】
求出橢圓與雙曲線的離心率,根據離心率之積的關系,然后推出關系,即可求解雙曲線的漸近線方程.【詳解】,橢圓的方程為,的離心率為:,雙曲線方程為,的離心率:,與的離心率之積為,,,的漸近線方程為:,即.故答案為:【點睛】本題考查了橢圓、雙曲線的幾何性質,掌握橢圓、雙曲線的離心率公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)在上有解,,設,求導根據函數的單調性得到最值,得到答案.(2)證明,只需證,記,求導得到函數的單調性,得到函數的最小值,得到證明.【詳解】(1)由題可得,在上有解,則,令,,當時,單調遞增;當時,單調遞減.所以是的最大值點,所以.(2)由,所以,要證明,只需證,即證.記在上單調遞增,且,當時,單調遞減;當時,單調遞增.所以是的最小值點,,則,故.【點睛】本題考查了函數的切線問題,證明不等式,意在考查學生的綜合應用能力和轉化能力.18、(1)見解析(2)【解析】
(1)由已知可證得平面,則有,在中,由已知可得,即可證得平面,進而證得結論.(2)過作交于,由為的中點,結合已知有平面.則,可求得.建立坐標系分別求得面的法向量,平面的一個法向量為,利用公式即可求得結果.【詳解】(1)證明:平面,平面,,又四邊形為正方形,.又、平面,且,平面..中,,為的中點,.又、平面,,平面.平面,平面平面.(2)解:過作交于,如圖為的中點,,.又平面,平面.,.所以,又、、兩兩互相垂直,以、、為坐標軸建立如圖所示的空間直角坐標系.,,,設平面的法向量,則,即.令,則,..平面的一個法向量為.二面角的余弦值為.【點睛】本題考查面面垂直的證明方法,考查了空間線線、線面、面面位置關系,考查利用向量法求二面角的方法,難度一般.19、(1)3(2)78【解析】試題分析:(1)由兩角和差公式得到,由三角形中的數值關系得到,進而求得數值;(2)由三角形的三個角的關系得到,再由正弦定理得到b=15,故面積公式為.解析:(1)在中,由,得為銳角,所以,所以,所以.(2)在三角形中,由,所以,由,由正弦定理,得,所以的面積.20、(1)79顆;(2)5.5秒.【解析】
(1)利用各小矩形的面積和為1可得,進而得到脈沖星自轉周期在2至10秒的頻率,從而得到頻數;(2)平均值的估計值為各小矩形組中值與頻率的乘積的和得到.【詳解】(1)第一到第六組的頻率依次為0.1,0.2,0.3,0.2,,0.05,其和為1所以,,所以,自轉周期在2至10秒的大約有(顆).(2)新發現的脈沖星自轉周期平均值為(秒).故新發現的脈沖星自轉周期平均值為5.5秒.【點睛】本題考查頻率分布直方圖的應用,涉及到平均數的估計值等知識,是一道容易題.21、(1),;(2)證明見解析.【解析】
(1)根據題中條件求出等差數列的首項和公差,然后根據首項和公差即可求出數列的通項和前項和;(2)根據裂項求和求出,根據的表達式即可證明.【詳解】(1)設的公差為,由題意有,且,所以,;(2)因為,所以,.【點睛】本題主要考查了等差數列基本量的求解,裂項求和法,屬于基礎題.22、(1)證明見解析,是,,,,;(2)【解析】
(1)根據是球的直徑,則,又平面,得到,再由線面垂直的判定定理得到平面,,進而得到,再利用線面垂直的判定定理得到平面.(2)以A為原點,,,所在直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度浙江省護師類之主管護師每日一練試卷B卷含答案
- 2024年度浙江省二級造價工程師之建設工程造價管理基礎知識考前沖刺模擬試卷B卷含答案
- 2024年度浙江省二級造價工程師之安裝工程建設工程計量與計價實務自我檢測試卷B卷附答案
- 內科醫師年度工作總結
- 學前教育畢業三分鐘答辯
- 中建新員工培訓總結
- DB43-T 2872-2023 工業企業碳中和實施指南
- 浙教版科學七下期末復習專題卷一 生物的結構與生殖 基礎卷(含答案)
- 淘系客服培訓
- 二年級下學期數學期末素養評價(含解析)浙江省溫州市平陽縣2024-2025學年
- 化妝品生產工藝驗證報告范文模板-新規要求工藝參數及關鍵控制點驗證
- 大蒜項目可行性報告
- 學生實習家長知情同意書(完美版)
- 《白夜行》名著導讀讀書分享
- 藍莓可行性研究報告
- 山東省汽車維修工時定額(T-SDAMTIA 0001-2023)
- 綜合布線設計與施工 第4版 課件全套 第1-13章 網絡綜合布線概述-網絡綜合布線實訓
- 小學語文-“實用性閱讀與交流”學習任務群設計與實施例談
- 移動破碎施工方案
- 國開(山東)地域文化(本)形成性考核1-3答案
- 厚皮甜瓜設施栽培技術規程
評論
0/150
提交評論