




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省鄭州市中原區第一中學2025屆高三下學期摸底數學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,給出下列四個結論:①函數的值域是;②函數為奇函數;③函數在區間單調遞減;④若對任意,都有成立,則的最小值為;其中正確結論的個數是()A. B. C. D.2.將3個黑球3個白球和1個紅球排成一排,各小球除了顏色以外其他屬性均相同,則相同顏色的小球不相鄰的排法共有()A.14種 B.15種 C.16種 D.18種3.已知復數滿足(是虛數單位),則=()A. B. C. D.4.已知函數,滿足對任意的實數,都有成立,則實數的取值范圍為()A. B. C. D.5.函數滿足對任意都有成立,且函數的圖象關于點對稱,,則的值為()A.0 B.2 C.4 D.16.已知函數,其中,,其圖象關于直線對稱,對滿足的,,有,將函數的圖象向左平移個單位長度得到函數的圖象,則函數的單調遞減區間是()A. B.C. D.7.若,滿足約束條件,則的取值范圍為()A. B. C. D.8.已知橢圓(a>b>0)與雙曲線(a>0,b>0)的焦點相同,則雙曲線漸近線方程為()A. B.C. D.9.已知點為雙曲線的右焦點,直線與雙曲線交于A,B兩點,若,則的面積為()A. B. C. D.10.設,,是非零向量.若,則()A. B. C. D.11.大衍數列,米源于我國古代文獻《乾坤譜》中對易傳“大衍之數五十”的推論,主要用于解釋我國傳統文化中的太極衍生原理,數列中的每一項,都代表太極衍生過程中,曾經經歷過的兩儀數量總和.已知該數列前10項是0,2,4,8,12,18,24,32,40,50,…,則大衍數列中奇數項的通項公式為()A. B. C. D.12.已知角的頂點為坐標原點,始邊與軸的非負半軸重合,終邊上有一點,則().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數是定義在上的奇函數,則的值為__________.14.已知等差數列的各項均為正數,,且,若,則________.15.若實數滿足不等式組,則的最小值是___16.驗證碼就是將一串隨機產生的數字或符號,生成一幅圖片,圖片里加上一些干擾象素(防止),由用戶肉眼識別其中的驗證碼信息,輸入表單提交網站驗證,驗證成功后才能使用某項功能.很多網站利用驗證碼技術來防止惡意登錄,以提升網絡安全.在抗疫期間,某居民小區電子出入證的登錄驗證碼由0,1,2,…,9中的五個數字隨機組成.將中間數字最大,然后向兩邊對稱遞減的驗證碼稱為“鐘型驗證碼”(例如:如14532,12543),已知某人收到了一個“鐘型驗證碼”,則該驗證碼的中間數字是7的概率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中.若問題中的正整數存在,求的值;若不存在,說明理由.設正數等比數列的前項和為,是等差數列,__________,,,,是否存在正整數,使得成立?18.(12分)在①;②;③這三個條件中任選一個,補充在下面問題中的橫線上,并解答相應的問題.在中,內角A,B,C的對邊分別為a,b,c,且滿足________________,,求的面積.19.(12分)如圖所示,四棱錐P﹣ABCD中,PC⊥底面ABCD,PC=CD=2,E為AB的中點,底面四邊形ABCD滿足∠ADC=∠DCB=90°,AD=1,BC=1.(Ⅰ)求證:平面PDE⊥平面PAC;(Ⅱ)求直線PC與平面PDE所成角的正弦值;(Ⅲ)求二面角D﹣PE﹣B的余弦值.20.(12分)如圖,已知平面與直線均垂直于所在平面,且.(1)求證:平面;(2)若,求與平面所成角的正弦值.21.(12分)在平面直角坐標系中,已知點,曲線:(為參數)以原點為極點,軸正半軸建立極坐標系,直線的極坐標方程為.(Ⅰ)判斷點與直線的位置關系并說明理由;(Ⅱ)設直線與曲線的兩個交點分別為,,求的值.22.(10分)已知函數.(1)當時,解關于x的不等式;(2)當時,若對任意實數,都成立,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
化的解析式為可判斷①,求出的解析式可判斷②,由得,結合正弦函數得圖象即可判斷③,由得可判斷④.【詳解】由題意,,所以,故①正確;為偶函數,故②錯誤;當時,,單調遞減,故③正確;若對任意,都有成立,則為最小值點,為最大值點,則的最小值為,故④正確.故選:C.【點睛】本題考查三角函數的綜合運用,涉及到函數的值域、函數單調性、函數奇偶性及函數最值等內容,是一道較為綜合的問題.2、D【解析】
采取分類計數和分步計數相結合的方法,分兩種情況具體討論,一種是黑白依次相間,一種是開始僅有兩個相同顏色的排在一起【詳解】首先將黑球和白球排列好,再插入紅球.情況1:黑球和白球按照黑白相間排列(“黑白黑白黑白”或“白黑白黑白黑”),此時將紅球插入6個球組成的7個空中即可,因此共有2×7=14種;情況2:黑球或白球中僅有兩個相同顏色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此時紅球只能插入兩個相同顏色的球之中,共4種.綜上所述,共有14+4=18種.故選:D【點睛】本題考查排列組合公式的具體應用,插空法的應用,屬于基礎題3、A【解析】
把已知等式變形,再由復數代數形式的乘除運算化簡得答案.【詳解】解:由,得,.故選.【點睛】本題考查復數代數形式的乘除運算,考查復數的基本概念,是基礎題.4、B【解析】
由題意可知函數為上為減函數,可知函數為減函數,且,由此可解得實數的取值范圍.【詳解】由題意知函數是上的減函數,于是有,解得,因此,實數的取值范圍是.故選:B.【點睛】本題考查利用分段函數的單調性求參數,一般要分析每支函數的單調性,同時還要考慮分段點處函數值的大小關系,考查運算求解能力,屬于中等題.5、C【解析】
根據函數的圖象關于點對稱可得為奇函數,結合可得是周期為4的周期函數,利用及可得所求的值.【詳解】因為函數的圖象關于點對稱,所以的圖象關于原點對稱,所以為上的奇函數.由可得,故,故是周期為4的周期函數.因為,所以.因為,故,所以.故選:C.【點睛】本題考查函數的奇偶性和周期性,一般地,如果上的函數滿足,那么是周期為的周期函數,本題屬于中檔題.6、B【解析】
根據已知得到函數兩個對稱軸的距離也即是半周期,由此求得的值,結合其對稱軸,求得的值,進而求得解析式.根據圖像變換的知識求得的解析式,再利用三角函數求單調區間的方法,求得的單調遞減區間.【詳解】解:已知函數,其中,,其圖像關于直線對稱,對滿足的,,有,∴.再根據其圖像關于直線對稱,可得,.∴,∴.將函數的圖像向左平移個單位長度得到函數的圖像.令,求得,則函數的單調遞減區間是,,故選B.【點睛】本小題主要考查三角函數圖像與性質求函數解析式,考查三角函數圖像變換,考查三角函數單調區間的求法,屬于中檔題.7、B【解析】
根據約束條件作出可行域,找到使直線的截距取最值得點,相應坐標代入即可求得取值范圍.【詳解】畫出可行域,如圖所示:由圖可知,當直線經過點時,取得最小值-5;經過點時,取得最大值5,故.故選:B【點睛】本題考查根據線性規劃求范圍,屬于基礎題.8、A【解析】
由題意可得,即,代入雙曲線的漸近線方程可得答案.【詳解】依題意橢圓與雙曲線即的焦點相同,可得:,即,∴,可得,雙曲線的漸近線方程為:,故選:A.【點睛】本題考查橢圓和雙曲線的方程和性質,考查漸近線方程的求法,考查方程思想和運算能力,屬于基礎題.9、D【解析】
設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,設,得,求出的值,即得解.【詳解】設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,所以,.設,則,又.故,所以.故選:D【點睛】本題主要考查雙曲線的簡單幾何性質,考查余弦定理解三角形和三角形面積的計算,意在考查學生對這些知識的理解掌握水平.10、D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點:平面向量數量積.【思路點睛】幾何圖形中向量的數量積問題是近幾年高考的又一熱點,作為一類既能考查向量的線性運算、坐標運算、數量積及平面幾何知識,又能考查學生的數形結合能力及轉化與化歸能力的問題,實有其合理之處.解決此類問題的常用方法是:①利用已知條件,結合平面幾何知識及向量數量積的基本概念直接求解(較易);②將條件通過向量的線性運算進行轉化,再利用①求解(較難);③建系,借助向量的坐標運算,此法對解含垂直關系的問題往往有很好效果.11、B【解析】
直接代入檢驗,排除其中三個即可.【詳解】由題意,排除D,,排除A,C.同時B也滿足,,,故選:B.【點睛】本題考查由數列的項選擇通項公式,解題時可代入檢驗,利用排除法求解.12、B【解析】
根據角終邊上的點坐標,求得,代入二倍角公式即可求得的值.【詳解】因為終邊上有一點,所以,故選:B【點睛】此題考查二倍角公式,熟練記憶公式即可解決,屬于簡單題目.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先利用輔助角公式將轉化成,根據函數是定義在上的奇函數得出,從而得出函數解析式,最后求出即可.【詳解】解:,又因為定義在上的奇函數,則,則,又因為,所以,,所以.故答案為:【點睛】本題考查三角函數的化簡,三角函數的奇偶性和三角函數求值,考查了基本知識的應用能力和計算能力,是基礎題.14、【解析】
設等差數列的公差為,根據,且,可得,解得,進而得出結論.【詳解】設公差為,因為,所以,所以,所以故答案為:【點睛】本題主要考查了等差數列的通項公式、需熟記公式,屬于基礎題.15、-1【解析】作出可行域,如圖:由得,由圖可知當直線經過A點時目標函數取得最小值,A(1,0)所以-1故答案為-116、【解析】
首先判斷出中間號碼的所有可能取值,由此求得基本事件的總數以及中間數字是的事件數,根據古典概型概率計算公式計算出所求概率.【詳解】根據“鐘型驗證碼”中間數字最大,然后向兩邊對稱遞減,所以中間的數字可能是.當中間是時,其它個數字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數有種.當中間是時,其它個數字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數有種.當中間是時,其它個數字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數有種.當中間是時,其它個數字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數有種.當中間是時,其它個數字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數有種.當中間是時,其它個數字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數有種.所以該驗證碼的中間數字是7的概率為.故答案為:【點睛】本小題主要考查古典概型概率計算,考查分類加法計數原理、分類乘法計數原理的應用,考查運算求解能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、見解析【解析】
根據等差數列性質及、,可求得等差數列的通項公式,由即可求得的值;根據等式,變形可得,分別討論取①②③中的一個,結合等比數列通項公式代入化簡,檢驗是否存在正整數的值即可.【詳解】∵在等差數列中,,∴,∴公差,∴,∴,若存在正整數,使得成立,即成立,設正數等比數列的公比為的公比為,若選①,∵,∴,∴,∴,∴當時,滿足成立.若選②,∵,∴,∴,∴,∴方程無正整數解,∴不存在正整數使得成立.若選③,∵,∴,∴,∴,∴解得或(舍去),∴,∴當時,滿足成立.【點睛】本題考查了等差數列通項公式的求法,等比數列通項公式及前n項和公式的應用,遞推公式的簡單應用,補充條件后求參數的值,屬于中檔題.18、橫線處任填一個都可以,面積為.【解析】
無論選哪一個,都先由正弦定理化邊為角后,由誘導公式,展開后,可求得角,再由余弦定理求得,從而易求得三角形面積.【詳解】在橫線上填寫“”.解:由正弦定理,得.由,得.由,得.所以.又(若,則這與矛盾),所以.又,得.由余弦定理及,得,即.將代入,解得.所以.在橫線上填寫“”.解:由及正弦定理,得.又,所以有.因為,所以.從而有.又,所以由余弦定理及,得即.將代入,解得.所以.在橫線上填寫“”解:由正弦定理,得.由,得,所以由二倍角公式,得.由,得,所以.所以,即.由余弦定理及,得.即.將代入,解得.所以.【點睛】本題考查三角形面積公式,考查正弦定理、余弦定理,兩角和的正弦公式等,正弦定理進行邊角轉換,求三角形面積時,①若三角形中已知一個角(角的大小或該角的正、余弦值),結合題意求解這個角的兩邊或該角的兩邊之積,代入公式求面積;②若已知三角形的三邊,可先求其一個角的余弦值,再求其正弦值,代入公式求面積,總之,結合圖形恰當選擇面積公式是解題的關鍵.19、(Ⅰ)證明見解析(Ⅱ).(Ⅲ)﹣.【解析】
(Ⅰ)由題知,如圖以點為原點,直線分別為軸,建立空間直角坐標系,計算,證明,從而平面PAC,即可得證;(Ⅱ)求解平面PDE的一個法向量,計算,即可得直線PC與平面PDE所成角的正弦值;(Ⅲ)求解平面PBE的一個法向量,計算,即可得二面角D﹣PE﹣B的余弦值.【詳解】(Ⅰ)PC⊥底面ABCD,,如圖以點為原點,直線分別為軸,建立空間直角坐標系,則,,,,又,平面PAC,平面PDE,平面PDE⊥平面PAC;(Ⅱ)設為平面PDE的一個法向量,又,則,取,得,直線PC與平面PDE所成角的正弦值;(Ⅲ)設為平面PBE的一個法向量,又則,取,得,,二面角D﹣PE﹣B的余弦值﹣.【點睛】本題主要考查了平面與平面的垂直,直線與平面所成角的計算,二面角大小的求解,考查了空間向量在立體幾何中的應用,考查了學生的空間想象能力與運算求解能力.20、(1)見解析;(2)【解析】
(Ⅰ)證明:過點作于點,∵平面⊥平面,∴平面又∵⊥平面∴∥,又∵平面∴∥平面(Ⅱ)∵平面∴,又∵∴∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 航空裝備試驗基地建設項目可行性研究報告
- 2025年傳感器網絡自組網技術在智能工廠設備預測性維護中的應用報告
- 數據安全AI驅動的云備份系統-洞察闡釋
- 2025合同范本租賃轉讓協議 示例
- 2025裝飾公司員工試用期合同
- 2025標準購房合同范本2
- 處方書寫考試試題及答案
- 除顫儀的考試試題及答案
- 初中一診考試試題及答案
- 2025合同范本知識產權質押擔保合同
- 高中物理情境化選擇題專題練習
- 物流運輸托運單模板完整版
- 突發環境事件應急預案備案表
- 施工進度計劃表(參考模板)
- 《項目五:新能源汽車制動系統》工作頁
- 誤吸評價表完整優秀版
- 汽車修理行業危險廢物管理
- DL∕T 2101-2020 架空輸電線路固定翼無人機巡檢系統
- 園林綠化工程安全和功能檢驗資料核查及主要功能抽查記錄
- 2022更新國家開放大學電大《計算機應用基礎(專)》終結性考試大作業答案任務一
- 羅伊護理個案模板
評論
0/150
提交評論