




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省福州市閩侯第六中學2025年高三下學期3月調研考試數學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線的焦點為,對稱軸與準線的交點為,為上任意一點,若,則()A.30° B.45° C.60° D.75°2.在中,,,,若,則實數()A. B. C. D.3.我國南北朝時的數學著作《張邱建算經》有一道題為:“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中間四人未到者,亦依次更給,問各得金幾何?”則在該問題中,等級較高的二等人所得黃金比等級較低的九等人所得黃金()A.多1斤 B.少1斤 C.多斤 D.少斤4.將函數的圖像向左平移個單位得到函數的圖像,則的最小值為()A. B. C. D.5.已知,則的大小關系為()A. B. C. D.6.已知函數是定義在R上的奇函數,且滿足,當時,(其中e是自然對數的底數),若,則實數a的值為()A. B.3 C. D.7.已知數列滿足:,則()A.16 B.25 C.28 D.338.已知正項等比數列滿足,若存在兩項,,使得,則的最小值為().A.16 B. C.5 D.49.執行如圖所示的程序框圖,若輸出的,則①處應填寫()A. B. C. D.10.雙曲線:(,)的一個焦點為(),且雙曲線的兩條漸近線與圓:均相切,則雙曲線的漸近線方程為()A. B. C. D.11.已知命題:任意,都有;命題:,則有.則下列命題為真命題的是()A. B. C. D.12.將函數圖象向右平移個單位長度后,得到函數的圖象關于直線對稱,則函數在上的值域是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在的二項展開式中,所有項的系數的和為________14.已知,,,的夾角為30°,,則_________.15.連續擲兩次骰子,分別得到的點數作為點的坐標,則點落在圓內的概率為______________.16.設變量,滿足約束條件,則目標函數的最小值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知在三棱錐中,平面,分別為的中點,且.(1)求證:;(2)設平面與交于點,求證:為的中點.18.(12分)隨著小汽車的普及,“駕駛證”已經成為現代人“必考”的證件之一.若某人報名參加了駕駛證考試,要順利地拿到駕駛證,他需要通過四個科目的考試,其中科目二為場地考試.在一次報名中,每個學員有5次參加科目二考試的機會(這5次考試機會中任何一次通過考試,就算順利通過,即進入下一科目考試;若5次都沒有通過,則需重新報名),其中前2次參加科目二考試免費,若前2次都沒有通過,則以后每次參加科目二考試都需要交200元的補考費.某駕校對以往2000個學員第1次參加科目二考試進行了統計,得到下表:考試情況男學員女學員第1次考科目二人數1200800第1次通過科目二人數960600第1次未通過科目二人數240200若以上表得到的男、女學員第1次通過科目二考試的頻率分別作為此駕校男、女學員每次通過科目二考試的概率,且每人每次是否通過科目二考試相互獨立.現有一對夫妻同時在此駕校報名參加了駕駛證考試,在本次報名中,若這對夫妻參加科目二考試的原則為:通過科目二考試或者用完所有機會為止.(1)求這對夫妻在本次報名中參加科目二考試都不需要交補考費的概率;(2)若這對夫妻前2次參加科目二考試均沒有通過,記這對夫妻在本次報名中參加科目二考試產生的補考費用之和為元,求的分布列與數學期望.19.(12分)已知函數.(1)求函數f(x)的最小正周期;(2)求在上的最大值和最小值.20.(12分)已知,均為正數,且.證明:(1);(2).21.(12分)對于給定的正整數k,若各項均不為0的數列滿足:對任意正整數總成立,則稱數列是“數列”.(1)證明:等比數列是“數列”;(2)若數列既是“數列”又是“數列”,證明:數列是等比數列.22.(10分)已知三棱錐中,為等腰直角三角形,,設點為中點,點為中點,點為上一點,且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
如圖所示:作垂直于準線交準線于,則,故,得到答案.【詳解】如圖所示:作垂直于準線交準線于,則,在中,,故,即.故選:.【點睛】本題考查了拋物線中角度的計算,意在考查學生的計算能力和轉化能力.2.D【解析】
將、用、表示,再代入中計算即可.【詳解】由,知為的重心,所以,又,所以,,所以,.故選:D【點睛】本題考查平面向量基本定理的應用,涉及到向量的線性運算,是一道中檔題.3.C【解析】設這十等人所得黃金的重量從大到小依次組成等差數列則由等差數列的性質得,故選C4.B【解析】
根據三角函數的平移求出函數的解析式,結合三角函數的性質進行求解即可.【詳解】將函數的圖象向左平移個單位,得到,此時與函數的圖象重合,則,即,,當時,取得最小值為,故選:.【點睛】本題主要考查三角函數的圖象和性質,利用三角函數的平移關系求出解析式是解決本題的關鍵.5.A【解析】
根據指數函數的單調性,可得,再利用對數函數的單調性,將與對比,即可求出結論.【詳解】由題知,,則.故選:A.【點睛】本題考查利用函數性質比較大小,注意與特殊數的對比,屬于基礎題..6.B【解析】
根據題意,求得函數周期,利用周期性和函數值,即可求得.【詳解】由已知可知,,所以函數是一個以4為周期的周期函數,所以,解得,故選:B.【點睛】本題考查函數周期的求解,涉及對數運算,屬綜合基礎題.7.C【解析】
依次遞推求出得解.【詳解】n=1時,,n=2時,,n=3時,,n=4時,,n=5時,.故選:C【點睛】本題主要考查遞推公式的應用,意在考查學生對這些知識的理解掌握水平.8.D【解析】
由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.【詳解】設等比數列公比為,由已知,,即,解得或(舍),又,所以,即,故,所以,當且僅當時,等號成立.故選:D.【點睛】本題考查利用基本不等式求式子和的最小值問題,涉及到等比數列的知識,是一道中檔題.9.B【解析】
模擬程序框圖運行分析即得解.【詳解】;;.所以①處應填寫“”故選:B【點睛】本題主要考查程序框圖,意在考查學生對這些知識的理解掌握水平.10.A【解析】
根據題意得到,化簡得到,得到答案.【詳解】根據題意知:焦點到漸近線的距離為,故,故漸近線為.故選:.【點睛】本題考查了直線和圓的位置關系,雙曲線的漸近線,意在考查學生的計算能力和轉化能力.11.B【解析】
先分別判斷命題真假,再由復合命題的真假性,即可得出結論.【詳解】為真命題;命題是假命題,比如當,或時,則不成立.則,,均為假.故選:B【點睛】本題考查復合命題的真假性,判斷簡單命題的真假是解題的關鍵,屬于基礎題.12.D【解析】
由題意利用函數的圖象變換規律,三角函數的圖象的對稱性,余弦函數的值域,求得結果.【詳解】解:把函數圖象向右平移個單位長度后,可得的圖象;再根據得到函數的圖象關于直線對稱,,,,函數.在上,,,故,即的值域是,故選:D.【點睛】本題主要考查函數的圖象變換規律,三角函數的圖象的對稱性,余弦函數的值域,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
設,令,的值即為所有項的系數之和。【詳解】設,令,所有項的系數的和為。【點睛】本題主要考查二項式展開式所有項的系數的和的求法─賦值法。一般地,對于,展開式各項系數之和為,注意與“二項式系數之和”區分。14.1【解析】
由求出,代入,進行數量積的運算即得.【詳解】,存在實數,使得.不共線,.,,,的夾角為30°,.故答案為:1.【點睛】本題考查向量共線定理和平面向量數量積的運算,屬于基礎題.15.【解析】
連續擲兩次骰子共有種結果,列出滿足條件的結果有11種,利用古典概型即得解【詳解】由題意知,連續擲兩次骰子共有種結果,而滿足條件的結果為:共有11種結果,根據古典概型概率公式,可得所求概率.故答案為:【點睛】本題考查了古典概型的應用,考查了學生綜合分析,數學運算的能力,屬于基礎題.16.-8【解析】
通過約束條件,畫出可行域,將問題轉化為直線在軸截距最大的問題,通過圖像解決.【詳解】由題意可得可行域如下圖所示:令,則即為在軸截距的最大值由圖可知:當過時,在軸截距最大本題正確結果:【點睛】本題考查線性規劃中的型最值的求解問題,關鍵在于將所求最值轉化為在軸截距的問題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2)證明見解析.【解析】
(1)要做證明,只需證明平面即可;(2)易得∥平面,平面,利用線面平行的性質定理即可得到∥,從而獲得證明【詳解】證明:(1)因為平面,平面,所以.因為,所以.又因為,平面,平面,所以平面.又因為平面,所以.(2)因為平面與交于點,所以平面.因為分別為的中點,所以∥.又因為平面,平面,所以∥平面.又因為平面,平面平面,所以∥,又因為是的中點,所以為的中點.【點睛】本題考查線面垂直的判定定理以及線面平行的性質定理,考查學生的邏輯推理能力,是一道容易題.18.(1);(2)見解析.【解析】
事件表示男學員在第次考科目二通過,事件表示女學員在第次考科目二通過(其中)(1)這對夫妻是否通過科目二考試相互獨立,利用獨立事件乘法公式即可求得;(2)補考費用之和為元可能取值為400,600,800,1000,1200,根據題意可求相應的概率,進而可求X的數學期望.【詳解】事件表示男學員在第次考科目二通過,事件表示女學員在第次考科目二通過(其中).(1)事件表示這對夫妻考科目二都不需要交補考費..(2)的可能取值為400,600,800,1000,1200.,,,,.則的分布列為:40060080010001200故(元).【點睛】本題以實際問題為素材,考查離散型隨機變量的概率及期望,解題時要注意獨立事件概率公式的靈活運用,屬于基礎題.19.(1);(2)見解析【解析】
將函數解析式化簡即可求出函數的最小正周期根據正弦函數的圖象和性質即可求出函數在定義域上的最大值和最小值【詳解】(Ⅰ)由題意得原式的最小正周期為.(Ⅱ),.當,即時,;當,即時,.綜上,得時,取得最小值為0;當時,取得最大值為.【點睛】本題主要考查了兩角和與差的余弦公式展開,輔助角公式,三角函數的性質等,較為綜合,也是常考題型,需要計算正確,屬于基礎題20.(1)見解析(2)見解析【解析】
(1)由進行變換,得到,兩邊開方并化簡,證得不等式成立.(2)將化為,然后利用基本不等式,證得不等式成立.【詳解】(1),兩邊加上得,即,當且僅當時取等號,∴.(2).當且僅當時取等號.【點睛】本小題主要考查利用基本不等式證明不等式成立,考查化歸與轉化的數學思想方法,屬于中檔題.21.(1)證明見詳解;(2)證明見詳解【解析】
(1)由是等比數列,由等比數列的性質可得:即可證明.(2)既是“數列”又是“數列”,可得,,則對于任意都成立,則成等比數列,設公比為,驗證得答案.【詳解】(1)證明:由是等比數列,由等比數列的性質可得:等比數列是“數列”.(2)證明:既是“數列”又是“數列”,可得,()(),()可得:對于任意都成立,即成等比數列,即成等比數列,成等比數列,成等比數列,設,()數列是“數列”時,由()可得:時,由()可得:,可得,同理可證成等比數列,數列是等比數列【點睛】本題是一道數列的新定義題目,考查了等比數列的性質、通項公式等基本知識,考查代數推理、轉化與化歸以及綜合運用數學知識探究與解決問題的能力,屬于難題.22.(1)證明見解析;(2)【解析】
(1)連接交于點,連接,通過證,并說明平面,來證明平面(2)采用建系法以、、所在直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CECS 10148-2021混凝土用膠粘型錨栓
- T/CECS 10034-2019綠色建材評價建筑節能玻璃
- T/CCOA 19-2020楂魚油
- T/CCMA 0117-2021工業設備設施專用齒輪齒條升降機
- T/CCAS 014.4-2020水泥企業安全管理導則第4部分:水泥工廠場內機動車輛安全管理
- T/CBMCA 046-2023潔凈室用裝配式隔墻及吊頂系統技術要求
- T/CBJ 4101-2022蓬萊海岸葡萄酒
- T/CBJ 2211-2024白酒智能釀造投配料應用指南
- T/CASMES 19-2022中小企業合規管理體系有效性評價
- T/CAPE 10002-2018設備管理體系實施指南
- 2024年6月高等學校英語應用能力考試B級真題2
- 2024年重慶市中考英語試卷真題B卷(含標準答案及解析)+聽力音頻
- 2024年越南電信 服務領域ICT投資趨勢行業現狀及前景分析2024-2030
- 廈門2024年福建廈門市兒童醫院(復旦大學附屬兒科醫院廈門醫院)招聘筆試歷年典型考題及考點附答案解析
- 2023年湖南省普通高等學校對口招生考試機電類專業綜合知識試題附答題卡
- 醫院用工合同醫院用工合同書(2024版)
- 管培生培養方案
- 口腔正畸學之矯治器及其制作技術常用器械課件
- 2024屆江蘇省淮安市數學高一下期末考試試題含解析
- JTG-H30-2015公路養護安全作業規程
- 危險化學品考試試題(含答案)
評論
0/150
提交評論