




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省婁底雙峰縣聯考2024屆中考數學押題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.一次函數滿足,且y隨x的增大而減小,則此函數的圖像一定不經過()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知平面內不同的兩點A(a+2,4)和B(3,2a+2)到x軸的距離相等,則a的值為(
)A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣53.如圖所示,△ABC為等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG邊長也為2,且AC與DE在同一直線上,△ABC從C點與D點重合開始,沿直線DE向右平移,直到點A與點E重合為止,設CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數關系的圖象大致是()A. B.C. D.4.如圖,若△ABC內接于半徑為R的⊙O,且∠A=60°,連接OB、OC,則邊BC的長為()A. B. C. D.5.如圖是由三個相同小正方體組成的幾何體的主視圖,那么這個幾何體可以是()A.B.C.D.6.如圖,BC平分∠ABE,AB∥CD,E是CD上一點,若∠C=35°,則∠BED的度數為()A.70° B.65° C.62° D.60°7.如圖,已知△ABC中,∠A=75°,則∠1+∠2=()A.335°° B.255° C.155° D.150°8.已知y關于x的函數圖象如圖所示,則當y<0時,自變量x的取值范圍是()A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<29.(2011?雅安)點P關于x軸對稱點為P1(3,4),則點P的坐標為()A.(3,﹣4)B.(﹣3,﹣4)C.(﹣4,﹣3)D.(﹣3,4)10.下列“慢行通過,注意危險,禁止行人通行,禁止非機動車通行”四個交通標志圖(黑白陰影圖片)中為軸對稱圖形的是()A. B. C. D.11.某種品牌手機經過二、三月份再次降價,每部售價由1000元降到810元,則平均每月降價的百分率為()A.20% B.11% C.10% D.9.5%12.如圖,電線桿CD的高度為h,兩根拉線AC與BC互相垂直(A、D、B在同一條直線上),設∠CAB=α,那么拉線BC的長度為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在菱形ABCD中,對角線AC、BD相交于點O,點E是線段BO上的一個動點,點F為射線DC上一點,若∠ABC=60°,∠AEF=120°,AB=4,則EF可能的整數值是_____.14.為增強學生身體素質,提高學生足球運動競技水平,我市開展“市長杯”足球比賽,賽制為單循環形式(每兩隊之間賽一場).現計劃安排21場比賽,應邀請多少個球隊參賽?設邀請x個球隊參賽,根據題意,可列方程為_____.15.如圖,等邊三角形AOB的頂點A的坐標為(﹣4,0),頂點B在反比例函數(x<0)的圖象上,則k=.16.如圖,在中,于點,于點,為邊的中點,連接,則下列結論:①,②,③為等邊三角形,④當時,.請將正確結論的序號填在橫線上__.17.為了求1+2+22+23+…+22016+22017的值,可令S=1+2+22+23+…+22016+22017,則2S=2+22+23+24+…+22017+22018,因此2S﹣S=22018﹣1,所以1+22+23+…+22017=22018﹣1.請你仿照以上方法計算1+5+52+53+…+52017的值是_____.18.如圖,已知反比例函數y=kx三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)計算:﹣(﹣2016)0+|﹣3|﹣4cos45°.20.(6分)中華文明,源遠流長;中華漢字,寓意深廣,為了傳承優秀傳統文化,某校團委組織了一次全校3000名學生參加的“漢字聽寫”大賽,賽后發現所有參賽學生的成績均不低于50分.為了更好地了解本次大賽的成績分布情況,隨機抽取了其中200名學生的成績(成績x取整數,總分100分)作為樣本進行整理,得到下列不完整的統計圖表:成績x/分頻數頻率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25請根據所給信息,解答下列問題:m=,n=;請補全頻數分布直方圖;若成績在90分以上(包括90分)的為“優”等,則該校參加這次比賽的3000名學生中成績“優”等約有多少人?21.(6分)如圖,一次函數y=kx+b的圖象與二次函數y=﹣x2+c的圖象相交于A(﹣1,2),B(2,n)兩點.(1)求一次函數和二次函數的解析式;(2)根據圖象直接寫出使二次函數的值大于一次函數的值的x的取值范圍;(3)設二次函數y=﹣x2+c的圖象與y軸相交于點C,連接AC,BC,求△ABC的面積.22.(8分)如圖,已知△ABC為等邊三角形,點D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點F.求證:△ABE≌△CAD;求∠BFD的度數.23.(8分)為了加強學生的安全意識,某校組織了學生參加安全知識競賽,從中抽取了部分的學生成績進行統計,繪制統計圖如圖(不完整).類別分數段A50.5~60.5B60.5~70.5C70.5~80.5D80.5~90.5E90.5~100.5請你根據上面的信息,解答下列問題.(1)若A組的頻數比B組小24,求頻數直方圖中的a,b的值;(2)在扇形統計圖中,D部分所對的圓心角為n°,求n的值并補全頻數直方圖;(3)若成績在80分以上為優秀,全校共有2000名學生,估計成績優秀的學生有多少名?24.(10分)如圖,⊙O直徑AB和弦CD相交于點E,AE=2,EB=6,∠DEB=30°,求弦CD長.25.(10分)如圖1,在平面直角坐標系中,O是坐標原點,長方形OACB的頂點A、B分別在x軸與y軸上,已知OA=6,OB=1.點D為y軸上一點,其坐標為(0,2),點P從點A出發以每秒2個單位的速度沿線段AC﹣CB的方向運動,當點P與點B重合時停止運動,運動時間為t秒.(1)當點P經過點C時,求直線DP的函數解析式;(2)如圖②,把長方形沿著OP折疊,點B的對應點B′恰好落在AC邊上,求點P的坐標.(3)點P在運動過程中是否存在使△BDP為等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.26.(12分)如圖,點A、B、C、D在同一條直線上,CE∥DF,EC=BD,AC=FD,求證:AE=FB.27.(12分)已知是上一點,.如圖①,過點作的切線,與的延長線交于點,求的大小及的長;如圖②,為上一點,延長線與交于點,若,求的大小及的長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
y隨x的增大而減小,可得一次函數y=kx+b單調遞減,k<0,又滿足kb<0,可得b>0,由此即可得出答案.【詳解】∵y隨x的增大而減小,∴一次函數y=kx+b單調遞減,∴k<0,∵kb<0,∴b>0,∴直線經過第二、一、四象限,不經過第三象限,故選C.【點睛】本題考查了一次函數的圖象和性質,熟練掌握一次函數y=kx+b(k≠0,k、b是常數)的圖象和性質是解題的關鍵.2、A【解析】分析:根據點A(a+2,4)和B(3,2a+2)到x軸的距離相等,得到4=|2a+2|,即可解答.詳解:∵點A(a+2,4)和B(3,2a+2)到x軸的距離相等,∴4=|2a+2|,a+2≠3,解得:a=?3,故選A.點睛:考查點的坐標的相關知識;用到的知識點為:到x軸和y軸的距離相等的點的橫縱坐標相等或互為相反數.3、A【解析】
此題可分為兩段求解,即C從D點運動到E點和A從D點運動到E點,列出面積隨動點變化的函數關系式即可.【詳解】解:設CD的長為與正方形DEFG重合部分圖中陰影部分的面積為當C從D點運動到E點時,即時,.當A從D點運動到E點時,即時,,與x之間的函數關系由函數關系式可看出A中的函數圖象與所求的分段函數對應.故選A.【點睛】本題考查的動點變化過程中面積的變化關系,重點是列出函數關系式,但需注意自變量的取值范圍.4、D【解析】
延長BO交圓于D,連接CD,則∠BCD=90°,∠D=∠A=60°;又BD=2R,根據銳角三角函數的定義得BC=R.【詳解】解:延長BO交⊙O于D,連接CD,則∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,∴BC=R,故選D.【點睛】此題綜合運用了圓周角定理、直角三角形30°角的性質、勾股定理,注意:作直徑構造直角三角形是解決本題的關鍵.5、A【解析】試題分析:主視圖是從正面看到的圖形,只有選項A符合要求,故選A.考點:簡單幾何體的三視圖.6、A【解析】
由AB∥CD,根據兩直線平行,內錯角相等,即可求得∠ABC的度數,又由BC平分∠ABE,即可求得∠ABE的度數,繼而求得答案.【詳解】∵AB∥CD,∠C=35°,∴∠ABC=∠C=35°,∵BC平分∠ABE,∴∠ABE=2∠ABC=70°,∵AB∥CD,∴∠BED=∠ABE=70°.故選:A.【點睛】本題考查了平行線的性質,解題的關鍵是掌握平行線的性質進行解答.7、B【解析】∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°﹣∠A=105°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°﹣105°=255°.故選B.點睛:本題考查了三角形、四邊形內角和定理,掌握n邊形內角和為(n﹣2)×180°(n≥3且n為整數)是解題的關鍵.8、B【解析】y<0時,即x軸下方的部分,∴自變量x的取值范圍分兩個部分是?1<x<1或x>2.故選B.9、A【解析】∵關于x軸對稱的點,橫坐標相同,縱坐標互為相反數,∴點P的坐標為(3,﹣4).故選A.10、B【解析】
根據軸對稱圖形的概念對各選項分析判斷即可得出答案.【詳解】A.不是軸對稱圖形,故本選項錯誤;B.是軸對稱圖形,故本選項正確;C.不是軸對稱圖形,故本選項錯誤;D.不是軸對稱圖形,故本選項錯誤.故選B.11、C【解析】
設二,三月份平均每月降價的百分率為,則二月份為,三月份為,然后再依據第三個月售價為1,列出方程求解即可.【詳解】解:設二,三月份平均每月降價的百分率為.根據題意,得=1.解得,(不合題意,舍去).答:二,三月份平均每月降價的百分率為10%【點睛】本題主要考查一元二次方程的應用,關于降價百分比的問題:若原數是a,每次降價的百分率為a,則第一次降價后為a(1-x);第二次降價后后為a(1-x)2,即:原數x(1-降價的百分率)2=后兩次數.12、B【解析】根據垂直的定義和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中cos∠BCD=,可得BC=.故選B.點睛:本題主要考查解直角三角形的應用,熟練掌握同角的余角相等和三角函數的定義是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2,3,1.【解析】分析:根據題意得出EF的取值范圍,從而得出EF的值.詳解:∵AB=1,∠ABC=60°,∴BD=1,當點E和點B重合時,∠FBD=90°,∠BDC=30°,則EF=1;當點E和點O重合時,∠DEF=30°,則△EFD為等腰三角形,則EF=FD=2,∴EF可能的整數值為2、3、1.點睛:本題主要考查的就是菱形的性質以及直角三角形的勾股定理,屬于中等難度的題型.解決這個問題的關鍵就是找出當點E在何處時取到最大值和最小值,從而得出答案.14、x(x﹣1)=1【解析】【分析】賽制為單循環形式(每兩隊之間都賽一場),x個球隊比賽總場數為x(x﹣1),即可列方程.【詳解】有x個隊,每個隊都要賽(x﹣1)場,但兩隊之間只有一場比賽,由題意得:x(x﹣1)=1,故答案為x(x﹣1)=1.【點睛】本題考查了一元二次方程的應用,弄清題意,找準等量關系列出方程是解題的關鍵.15、-4.【解析】
過點B作BD⊥x軸于點D,因為△AOB是等邊三角形,點A的坐標為(-4,0)所∠AOB=60°,根據銳角三角函數的定義求出BD及OD的長,可得出B點坐標,進而得出反比例函數的解析式.【詳解】過點B作BD⊥x軸于點D,∵△AOB是等邊三角形,點A的坐標為(﹣4,0),∴∠AOB=60°,OB=OA=AB=4,∴OD=OB=2,BD=OB?sin60°=4×=2,∴B(﹣2,2),∴k=﹣2×2=﹣4.【點睛】本題考查了反比例函數圖象上點的坐標特點、等邊三角形的性質、解直角三角函數等知識,難度適中.16、①③④【解析】
①根據直角三角形斜邊上的中線等于斜邊的一半可判斷①;②先證明△ABM∽△ACN,再根據相似三角形的對應邊成比例可判斷②;③先根據直角三角形兩銳角互余的性質求出∠ABM=∠ACN=30°,再根據三角形的內角和定理求出∠BCN+∠CBM=60°,然后根據三角形的一個外角等于與它不相鄰的兩個內角的和求出∠BPN+∠CPM=120°,從而得到∠MPN=60°,又由①得PM=PN,根據有一個角是60°的等腰三角形是等邊三角形可判斷③;④當∠ABC=45°時,∠BCN=45°,進而判斷④.【詳解】①∵BM⊥AC于點M,CN⊥AB于點N,P為BC邊的中點,∴PM=BC,PN=BC,∴PM=PN,正確;②在△ABM與△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,錯誤;③∵∠A=60°,BM⊥AC于點M,CN⊥AB于點N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM=180°-60°-30°×2=60°,∵點P是BC的中點,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等邊三角形,正確;④當∠ABC=45°時,∵CN⊥AB于點N,∴∠BNC=90°,∠BCN=45°,∵P為BC中點,可得BC=PB=PC,故④正確.所以正確的選項有:①③④故答案為①③④【點睛】本題主要考查了直角三角形斜邊的中線等于斜邊的一半的性質,相似三角形、等邊三角形、等腰直角三角形的判定與性質,等腰三角形三線合一的性質,仔細分析圖形并熟練掌握性質是解題的關鍵.17、【解析】
根據上面的方法,可以令S=1+5+52+53+…+52017,則5S=5+52+53+…+52012+52018,再相減算出S的值即可.【詳解】解:令S=1+5+52+53+…+52017,則5S=5+52+53+…+52012+52018,5S﹣S=﹣1+52018,4S=52018﹣1,則S=,故答案為:.【點睛】此題參照例子,采用類比的方法就可以解決,注意這里由于都是5的次方,所以要用5S來達到抵消的目的.18、34【解析】
由點B的坐標為(2,3),而點C為OB的中點,則C點坐標為(1,1.5),利用待定系數法可得到k=1.5,然后利用k的幾何意義即可得到△OAD的面積.【詳解】∵點B的坐標為(2,3),點C為OB的中點,∴C點坐標為(1,1.5),∴k=1×1.5=1.5,即反比例函數解析式為y=1.5x∴S△OAD=12×1.5=3故答案為:34【點睛】本題考查了反比例函數的幾何意義,一般的,從反比例函數y=kx(k為常數,k≠0)圖像上任一點P,向x軸和y軸作垂線你,以點P及點P的兩個垂足和坐標原點為頂點的矩形的面積等于常數k,以點P及點P的一個垂足和坐標原點為頂點的三角形的面積等于三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、1.【解析】
根據二次根式性質,零指數冪法則,絕對值的代數意義,以及特殊角的三角函數值依次計算后合并即可.【詳解】解:原式=1﹣1+3﹣4×=1.【點睛】本題考查實數的運算及特殊角三角形函數值.20、(1)70,0.2(2)70(3)750【解析】
(1)根據題意和統計表中的數據可以求得m、n的值;(2)根據(1)中求得的m的值,從而可以將條形統計圖補充完整;(3)根據統計表中的數據可以估計該校參加這次比賽的3000名學生中成績“優”等約有多少人.【詳解】解:(1)由題意可得,m=200×0.35=70,n=40÷200=0.2,故答案為70,0.2;(2)由(1)知,m=70,補全的頻數分布直方圖,如下圖所示;(3)由題意可得,該校參加這次比賽的3000名學生中成績“優”等約有:3000×0.25=750(人),答:該校參加這次比賽的3000名學生中成績“優”等約有750人.【點睛】本題考查頻數分布直方圖、頻數分布表、用樣本估計總體,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.21、(1)y=﹣x+1;(2)﹣1<x<2;(3)3;【解析】
(1)根據待定系數法求一次函數和二次函數的解析式即可.(2)根據圖象以及點A,B兩點的坐標即可求出使二次函數的值大于一次函數的值的x的取值范圍;(3)連接AC、BC,設直線AB交y軸于點D,根據即可求出△ABC的面積.【詳解】(1)把A(﹣1,2)代入y=﹣x2+c得:﹣1+c=2,解得:c=3,∴y=﹣x2+3,把B(2,n)代入y=﹣x2+3得:n=﹣1,∴B(2,﹣1),把A(﹣1,2)、B(2,﹣1)分別代入y=kx+b得解得:∴y=﹣x+1;(2)根據圖象得:使二次函數的值大于一次函數的值的x的取值范圍是﹣1<x<2;(3)連接AC、BC,設直線AB交y軸于點D,把x=0代入y=﹣x2+3得:y=3,∴C(0,3),把x=0代入y=﹣x+1得:y=1,∴D(0,1),∴CD=3﹣1=2,則【點睛】考查待定系數法求二次函數解析式,三角形的面積公式等,掌握待定系數法是解題的關鍵.22、(1)證明見解析;(2).【解析】試題分析:(1)根據等邊三角形的性質根據SAS即可證明△ABE≌△CAD;(2)由三角形全等可以得出∠ABE=∠CAD,由外角與內角的關系就可以得出結論.試題解析:(1)∵△ABC為等邊三角形,∴AB=BC=AC,∠ABC=∠ACB=∠BAC=60°.在△ABE和△CAD中,AB=CA,∠BAC=∠C,AE=CD,∴△ABE≌△CAD(SAS),(2)∵△ABE≌△CAD,∴∠ABE=∠CAD,∵∠BAD+∠CAD=60°,∴∠BAD+∠EBA=60°,∵∠BFD=∠ABE+∠BAD,∴∠BFD=60°.23、(1)40(2)126°,1(3)940名【解析】
(1)根據若A組的頻數比B組小24,且已知兩個組的百分比,據此即可求得總人數,然后根據百分比的意義求得a、b的值;(2)利用360°乘以對應的比例即可求解;(3)利用總人數乘以對應的百分比即可求解.【詳解】(1)學生總數是24÷(20%﹣8%)=200(人),則a=200×8%=16,b=200×20%=40;(2)n=360×=126°.C組的人數是:200×25%=1.;(3)樣本D、E兩組的百分數的和為1﹣25%﹣20%﹣8%=47%,∴2000×47%=940(名)答估計成績優秀的學生有940名.【點睛】本題考查讀頻數分布直方圖的能力和利用統計圖獲取信息的能力;利用統計圖獲取信息時,必須認真觀察、分析、研究統計圖,才能作出正確的判斷和解決問題.24、2【解析】試題分析:過O作OF垂直于CD,連接OD,利用垂徑定理得到F為CD的中點,由AE+EB求出直徑AB的長,進而確定出半徑OA與OD的長,由OA﹣AE求出OE的長,在直角三角形OEF中,利用30°所對的直角邊等于斜邊的一半求出OF的長,在直角三角形ODF中,利用勾股定理求出DF的長,由CD=2DF即可求出CD的長.試題解析:過O作OF⊥CD,交CD于點F,連接OD,∴F為CD的中點,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=12在Rt△ODF中,OF=1,OD=4,根據勾股定理得:DF=OD2-O則CD=2DF=215.考點:垂徑定理;勾股定理.25、(1)y=x+2;(2)y=x+2;(2)①S=﹣2t+16,②點P的坐標是(,1);(3)存在,滿足題意的P坐標為(6,6)或(6,2+2)或(6,1﹣2).【解析】分析:(1)設直線DP解析式為y=kx+b,將D與B坐標代入求出k與b的值,即可確定出解析式;
(2)①當P在AC段時,三角形ODP底OD與高為固定值,求出此時面積;當P在BC段時,底邊OD為固定值,表示出高,即可列出S與t的關系式;
②設P(m,1),則PB=PB′=m,根據勾股定理求出m的值,求出此時P坐標即可;
(3)存在,分別以BD,DP,BP為底邊三種情況考慮,利用勾股定理及圖形與坐標性質求出P坐標即可.詳解:(1)如圖1,∵OA=6,OB=1,四邊形OACB為長方形,∴C(6,1).設此時直線DP解析式為y=kx+b,把(0,2),C(6,1)分別代入,得,解得則此時直線DP解析式為y=x+2;(2)①當點P在線段AC上時,OD=2,高為6,S=6;當點P在線段BC上時,OD=2,高為6+1﹣2t=16﹣2t,S=×2×(16﹣2t)=﹣2t+16;②設P(m,1),則PB=PB′=m,如圖2,∵OB′=OB=1,OA=6,∴AB′==8,∴B′C=1﹣8=2,∵PC=6﹣m,∴m2=22+(6﹣m)2,解得m=則此時點P的坐標是(,1);(3)存在,理由為:若△BDP為等腰三角形,分三種情況考慮:如圖3,①當BD=BP1=OB﹣OD=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 云服務與網絡架構關系試題及答案
- 公路工程未來發展趨勢試題及答案
- 計算機四級備考軟件測試試題及答案
- 嵌入式開發中的質量控制試題及答案
- 探索公路工程可持續發展考點試題及答案
- 獸藥人員健康管理制度
- 農牧審批事項管理制度
- 小區跑步保安管理制度
- 學校雜物電梯管理制度
- 室內裝修現場管理制度
- 初中校本課程-讓交通法規為生命護航教學課件設計
- 2023年衡水市小升初英語考試模擬試題及答案解析
- a320mel放行偏差指南項ata21維護程序
- YS/T 555.1-2009鉬精礦化學分析方法鉬量的測定鉬酸鉛重量法
- TY/T 4001.2-2018汽車自駕運動營地服務管理要求
- GB/T 39865-2021單軸晶光學晶體折射率測量方法
- T-SZROBOT 0001-2021 商用清潔機器人通用技術規范
- GB/T 19869.1-2005鋼、鎳及鎳合金的焊接工藝評定試驗
- GB 19645-2010食品安全國家標準巴氏殺菌乳
- 《國際法學》課件-學生版
- 國企改革三年行動知識題庫
評論
0/150
提交評論