




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省七校2025屆高三第二次模擬考試數學試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知隨機變量的分布列是則()A. B. C. D.2.阿基米德(公元前287年—公元前212年),偉大的古希臘哲學家、數學家和物理學家,他死后的墓碑上刻著一個“圓柱容球”的立體幾何圖形,為紀念他發現“圓柱內切球的體積是圓柱體積的,且球的表面積也是圓柱表面積的”這一完美的結論.已知某圓柱的軸截面為正方形,其表面積為,則該圓柱的內切球體積為()A. B. C. D.3.小明有3本作業本,小波有4本作業本,將這7本作業本混放在-起,小明從中任取兩本.則他取到的均是自己的作業本的概率為()A. B. C. D.4.如圖,在正方體中,已知、、分別是線段上的點,且.則下列直線與平面平行的是()A. B. C. D.5.已知橢圓+=1(a>b>0)與直線交于A,B兩點,焦點F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.6.設向量,滿足,,,則的取值范圍是A. B.C. D.7.已知符號函數sgnxf(x)是定義在R上的減函數,g(x)=f(x)﹣f(ax)(a>1),則()A.sgn[g(x)]=sgnx B.sgn[g(x)]=﹣sgnxC.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]8.函數的圖象為C,以下結論中正確的是()①圖象C關于直線對稱;②圖象C關于點對稱;③由y=2sin2x的圖象向右平移個單位長度可以得到圖象C.A.① B.①② C.②③ D.①②③9.設、分別是定義在上的奇函數和偶函數,且,則()A. B.0 C.1 D.310.臺球是一項國際上廣泛流行的高雅室內體育運動,也叫桌球(中國粵港澳地區的叫法)、撞球(中國地區的叫法)控制撞球點、球的旋轉等控制母球走位是擊球的一項重要技術,一次臺球技術表演節目中,在臺球桌上,畫出如圖正方形ABCD,在點E,F處各放一個目標球,表演者先將母球放在點A處,通過擊打母球,使其依次撞擊點E,F處的目標球,最后停在點C處,若AE=50cm.EF=40cm.FC=30cm,∠AEF=∠CFE=60°,則該正方形的邊長為()A.50cm B.40cm C.50cm D.20cm11.在等差數列中,,,若(),則數列的最大值是()A. B.C.1 D.312.甲、乙兩名學生的六次數學測驗成績(百分制)的莖葉圖如圖所示.①甲同學成績的中位數大于乙同學成績的中位數;②甲同學的平均分比乙同學的平均分高;③甲同學的平均分比乙同學的平均分低;④甲同學成績的方差小于乙同學成績的方差.以上說法正確的是()A.③④ B.①② C.②④ D.①③④二、填空題:本題共4小題,每小題5分,共20分。13.設函數在區間上的值域是,則的取值范圍是__________.14.已知是夾角為的兩個單位向量,若,,則與的夾角為______.15.“學習強國”學習平臺是由中宣部主管,以深入學習宣傳新時代中國特色社會主義思想為主要內容,立足全體黨員、面向全社會的優質平臺,現已日益成為老百姓了解國家動態,緊跟時代脈搏的熱門app.該款軟件主要設有“閱讀文章”和“視聽學習”兩個學習板塊和“每日答題”、“每周答題”、“專項答題”、“挑戰答題”四個答題板塊.某人在學習過程中,將六大板塊依次各完成一次,則“閱讀文章”與“視聽學習”兩大學習板塊之間最多間隔一個答題板塊的學習方法有________種.16.過圓的圓心且與直線垂直的直線方程為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)改革開放40年,我國經濟取得飛速發展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調查.隨機抽取男女駕駛員各50人,進行問卷測評,所得分數的頻率分布直方圖如圖所示.規定得分在80分以上為交通安全意識強.安全意識強安全意識不強合計男性女性合計(Ⅰ)求的值,并估計該城市駕駛員交通安全意識強的概率;(Ⅱ)已知交通安全意識強的樣本中男女比例為4:1,完成2×2列聯表,并判斷有多大把握認為交通安全意識與性別有關;(Ⅲ)在(Ⅱ)的條件下,從交通安全意識強的駕駛員中隨機抽取2人,求抽到的女性人數的分布列及期望.附:,其中0.0100.0050.0016.6357.87910.82818.(12分)橢圓:的離心率為,點為橢圓上的一點.(1)求橢圓的標準方程;(2)若斜率為的直線過點,且與橢圓交于兩點,為橢圓的下頂點,求證:對于任意的實數,直線的斜率之積為定值.19.(12分)如圖,在四棱錐中,平面平面,.(Ⅰ)求證:平面;(Ⅱ)若銳二面角的余弦值為,求直線與平面所成的角.20.(12分)在中,角,,所對的邊分別是,,,且.(1)求的值;(2)若,求的取值范圍.21.(12分)中國古代數學經典《數書九章》中,將底面為矩形且有一條側棱與底面垂直的四棱錐稱為“陽馬”,將四個面都為直角三角形的四面體稱之為“鱉臑”.在如圖所示的陽馬中,底面ABCD是矩形.平面,,,以的中點O為球心,AC為直徑的球面交PD于M(異于點D),交PC于N(異于點C).(1)證明:平面,并判斷四面體MCDA是否是鱉臑,若是,寫出它每個面的直角(只需寫出結論);若不是,請說明理由;(2)求直線與平面所成角的正弦值.22.(10分)如圖,三棱柱的側棱垂直于底面,且,,,,是棱的中點.(1)證明:;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
利用分布列求出,求出期望,再利用期望的性質可求得結果.【詳解】由分布列的性質可得,得,所以,,因此,.故選:C.【點睛】本題考查離散型隨機變量的分布列以及期望的求法,是基本知識的考查.2、D【解析】
設圓柱的底面半徑為,則其母線長為,由圓柱的表面積求出,代入圓柱的體積公式求出其體積,結合題中的結論即可求出該圓柱的內切球體積.【詳解】設圓柱的底面半徑為,則其母線長為,因為圓柱的表面積公式為,所以,解得,因為圓柱的體積公式為,所以,由題知,圓柱內切球的體積是圓柱體積的,所以所求圓柱內切球的體積為.故選:D【點睛】本題考查圓柱的軸截面及表面積和體積公式;考查運算求解能力;熟練掌握圓柱的表面積和體積公式是求解本題的關鍵;屬于中檔題.3、A【解析】
利用計算即可,其中表示事件A所包含的基本事件個數,為基本事件總數.【詳解】從7本作業本中任取兩本共有種不同的結果,其中,小明取到的均是自己的作業本有種不同結果,由古典概型的概率計算公式,小明取到的均是自己的作業本的概率為.故選:A.【點睛】本題考查古典概型的概率計算問題,考查學生的基本運算能力,是一道基礎題.4、B【解析】
連接,使交于點,連接、,可證四邊形為平行四邊形,可得,利用線面平行的判定定理即可得解.【詳解】如圖,連接,使交于點,連接、,則為的中點,在正方體中,且,則四邊形為平行四邊形,且,、分別為、的中點,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面.故選:B.【點睛】本題主要考查了線面平行的判定,考查了推理論證能力和空間想象能力,屬于中檔題.5、A【解析】
聯立直線與橢圓方程求出交點A,B兩點,利用平面向量垂直的坐標表示得到關于的關系式,解方程求解即可.【詳解】聯立方程,解方程可得或,不妨設A(0,a),B(-b,0),由題意可知,·=0,因為,,由平面向量垂直的坐標表示可得,,因為,所以a2-c2=ac,兩邊同時除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A【點睛】本題考查橢圓方程及其性質、離心率的求解、平面向量垂直的坐標表示;考查運算求解能力和知識遷移能力;利用平面向量垂直的坐標表示得到關于的關系式是求解本題的關鍵;屬于中檔題、常考題型.6、B【解析】
由模長公式求解即可.【詳解】,當時取等號,所以本題答案為B.【點睛】本題考查向量的數量積,考查模長公式,準確計算是關鍵,是基礎題.7、A【解析】
根據符號函數的解析式,結合f(x)的單調性分析即可得解.【詳解】根據題意,g(x)=f(x)﹣f(ax),而f(x)是R上的減函數,當x>0時,x<ax,則有f(x)>f(ax),則g(x)=f(x)﹣f(ax)>0,此時sgn[g(x)]=1,當x=0時,x=ax,則有f(x)=f(ax),則g(x)=f(x)﹣f(ax)=0,此時sgn[g(x)]=0,當x<0時,x>ax,則有f(x)<f(ax),則g(x)=f(x)﹣f(ax)<0,此時sgn[g(x)]=﹣1,綜合有:sgn[g(x)]=sgn(x);故選:A.【點睛】此題考查函數新定義問題,涉及函數單調性辨析,關鍵在于讀懂定義,根據自變量的取值范圍分類討論.8、B【解析】
根據三角函數的對稱軸、對稱中心和圖象變換的知識,判斷出正確的結論.【詳解】因為,又,所以①正確.,所以②正確.將的圖象向右平移個單位長度,得,所以③錯誤.所以①②正確,③錯誤.故選:B【點睛】本小題主要考查三角函數的對稱軸、對稱中心,考查三角函數圖象變換,屬于基礎題.9、C【解析】
先根據奇偶性,求出的解析式,令,即可求出。【詳解】因為、分別是定義在上的奇函數和偶函數,,用替換,得,化簡得,即令,所以,故選C。【點睛】本題主要考查函數性質奇偶性的應用。10、D【解析】
過點做正方形邊的垂線,如圖,設,利用直線三角形中的邊角關系,將用表示出來,根據,列方程求出,進而可得正方形的邊長.【詳解】過點做正方形邊的垂線,如圖,設,則,,則,因為,則,整理化簡得,又,得,.即該正方形的邊長為.故選:D.【點睛】本題考查直角三角形中的邊角關系,關鍵是要構造直角三角形,是中檔題.11、D【解析】
在等差數列中,利用已知可求得通項公式,進而,借助函數的的單調性可知,當時,取最大即可求得結果.【詳解】因為,所以,即,又,所以公差,所以,即,因為函數,在時,單調遞減,且;在時,單調遞減,且.所以數列的最大值是,且,所以數列的最大值是3.故選:D.【點睛】本題考查等差數列的通項公式,考查數列與函數的關系,借助函數單調性研究數列最值問題,難度較易.12、A【解析】
由莖葉圖中數據可求得中位數和平均數,即可判斷①②③,再根據數據集中程度判斷④.【詳解】由莖葉圖可得甲同學成績的中位數為,乙同學成績的中位數為,故①錯誤;,,則,故②錯誤,③正確;顯然甲同學的成績更集中,即波動性更小,所以方差更小,故④正確,故選:A【點睛】本題考查由莖葉圖分析數據特征,考查由莖葉圖求中位數、平均數.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】
配方求出頂點,作出圖像,求出對應的自變量,結合函數圖像,即可求解.【詳解】,頂點為因為函數的值域是,令,可得或.又因為函數圖象的對稱軸為,且,所以的取值范圍為.故答案為:.【點睛】本題考查函數值域,考查數形結合思想,屬于基礎題.14、【解析】
依題意可得,再根據求模,求數量積,最后根據夾角公式計算可得;【詳解】解:因為是夾角為的兩個單位向量所以,又,所以,,所以,因為所以;故答案為:【點睛】本題考查平面向量的數量積的運算律,以及夾角的計算,屬于基礎題.15、【解析】
先分間隔一個與不間隔分類計數,再根據捆綁法求排列數,最后求和得結果.【詳解】若“閱讀文章”與“視聽學習”兩大學習板塊相鄰,則學習方法有種;若“閱讀文章”與“視聽學習”兩大學習板塊之間間隔一個答題板塊的學習方法有種;因此共有種.故答案為:【點睛】本題考查排列組合實際問題,考查基本分析求解能力,屬基礎題.16、【解析】
根據與已知直線垂直關系,設出所求直線方程,將已知圓圓心坐標代入,即可求解.【詳解】圓心為,所求直線與直線垂直,設為,圓心代入,可得,所以所求的直線方程為.故答案為:.【點睛】本題考查圓的方程、直線方程求法,注意直線垂直關系的靈活應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ).0.2(Ⅱ)見解析,有的把握認為交通安全意識與性別有關(Ⅲ)見解析,【解析】
(Ⅰ)直接根據頻率和為1計算得到答案.(Ⅱ)完善列聯表,計算,對比臨界值表得到答案.(Ⅲ)的取值為,計算概率得到分布列,計算數學期望得到答案.【詳解】(Ⅰ),解得.所以該城市駕駛員交通安全意識強的概率.(Ⅱ)安全意識強安全意識不強合計男性163450女性44650合計2080100,所以有的把握認為交通安全意識與性別有關(Ⅲ)的取值為所以的分布列為期望.【點睛】本題考查了獨立性檢驗,分布列,數學期望,意在考查學生的計算能力和綜合應用能力.18、(1);(2)證明見解析【解析】
(1)運用離心率公式和點滿足橢圓方程,解得,,進而得到橢圓方程;(2)設直線,代入橢圓方程,運用韋達定理和直線的斜率公式,以及點在直線上滿足直線方程,化簡整理,即可得到定值.【詳解】(1)因為,所以,①又橢圓過點,所以②由①②,解得所以橢圓的標準方程為.(2)證明設直線:,聯立得,設,則易知故所以對于任意的,直線的斜率之積為定值.【點睛】本題考查橢圓的方程的求法,注意運用離心率公式和點滿足橢圓方程,考查直線方程和橢圓方程聯立,運用韋達定理和直線的斜率公式,化簡整理,考查運算能力,屬于中檔題.19、(Ⅰ)詳見解析;(Ⅱ).【解析】
(Ⅰ)由余弦定理解得,即可得到,由面面垂直的性質可得平面,即可得到,從而得證;(Ⅱ)在平面中,過點作于點,則平面,如圖所示建立空間直角坐標系,設,其中,利用空間向量法得到二面角的余弦,即可得到的關系,從而得解;【詳解】解:(Ⅰ)證明:在中,,解得,則,從而因為平面平面,平面平面所以平面,又因為平面,所以,因為,,平面,平面,所以平面;(Ⅱ)解:在平面中,過點作于點,則平面,如圖所示建立空間直角坐標系,設,其中,則設平面的法向量為,則,即,令,則又平面的一個法向量,則從而,故則直線與平面所成的角為,大小為.【點睛】本題考查線面垂直的判定,面面垂直的性質定理的應用,利用空間向量法解決立體幾何問題,屬于中檔題.20、(1);(2)【解析】
(1)利用正弦定理邊化角,結合兩角和差正弦公式可整理求得,進而求得和,代入求得結果;(2)利用正弦定理可將表示為,利用兩角和差正弦公式、輔助角公式將其整理為,根據正弦型函數值域的求解方法,結合的范圍可求得結果.【詳解】(1)由正弦定理可得:即(2)由(1)知:,,即的取值范圍為【點睛】本題考查解三角形知識的相關應用,涉及到正弦定理邊化角的應用、兩角和差正弦公式和輔助角公式的應用、與三角函數值域有關的取值范圍的求解問題;求解取值范圍的關鍵是能夠利用正弦定理將邊長的問題轉化為三角函數的問題,進而利用正弦型函數值域的求解方法求得結果.21、(1)證
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 藥品采購藥庫管理制度
- 藥店中藥入庫管理制度
- 藥店庫房貨位管理制度
- 論述人力資源管理制度
- 設備創建流程管理制度
- 設備安裝進場管理制度
- 設備施工安全管理制度
- 設備點檢編制管理制度
- 設備維修項目管理制度
- 設備需求清單管理制度
- 2024北京朝陽區五年級(下)期末數學試題及答案
- 《商場促銷活動策劃》課件
- 多模態成像技術在醫學中的應用-全面剖析
- 郭秀艷-實驗心理學-練習題及答案
- 員工測試題目及答案
- 汽車點火考試題及答案
- 2024年湖南學考選擇性考試政治真題及答案
- 《用電飯煲蒸米飯》(教案)-2024-2025學年四年級上冊勞動魯科版
- 公司欠款清賬協議書
- 醫院培訓課件:《十八項核心醫療制度解讀》
- 七年級英語下冊 Unit 1 Can you play the guitar教學設計 (新版)人教新目標版
評論
0/150
提交評論