




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2、1、2、2指數函數及其性質習題課學案編寫者:黃岡實驗學校數學教師孟凡洲【注意】:這一部分我分了兩節課時來處理,第一課時講1、3、4部分,第二課時講2、5部分,各位老師可以根據自己學生的實際情況進行取舍.作業第一課時留的是第2題后的練習題,第二課時是這節課最后的作業規定.(教師注意:這一節課是一節習題課,根據實際情況可以分為兩個課時,若用多媒體,可以用一個課時來學習)(教師注意:這節課是非常重要的一節課,是學生們第一次接觸真正意義上的函數后的第一節習題課,要讓學生明白,我們以后研究函數都要從研究函數的定義域、值域、單調性、奇偶性有時候甚至是周期性、對稱性等方面來研究函數,當然研究函數的時候,還有函數模型這一方面,所以函數的意義是很廣泛的,也是很能讓人回味的,只有我們老師先沉浸其中,才能讓學生沉浸其中)【學習目標】(約2分鐘)(自學引導:課下完成預習是學習好這節課的關鍵)會初步解決函數的定義域值域問題;能認知函數圖像平移的初步知識.初步了解復合函數的構成;能解決復合函數的單調性、奇偶性問題;【教學效果】:教學目標的出示有利于學生把握總體課堂的學習.二、【自學內容和要求及自學過程與鞏固練習】(自學引導:這節課的五大塊內容是我們以后做函數問題的模板,希望同學們能認真的完成自學)基本方法、基本解體工具的總結1、請同學們復習、回憶下列內容<1>指數函數有哪些性質?<2>利用單調性的定義證明函數單調性的步驟有哪些?<3>如何判斷函數的奇偶性,判斷、證明函數的奇偶性有哪些方法?結論:<1>一般地,指數函數y=ax在底數a>1及0<a<1這兩種情況下的圖象和性質如下表所示:<2>依據函數單調性的定義證明函數單調性的步驟是:①取值.即設x1、x2是該區間內的任意兩個值且x1<x2.②作差變形.即求f(x2)-f(x1),通過因式分解、配方、有理化等方法,向有利于判斷差的符號的方向變形.③定號.根據給定的區間和x2-x1的符號確定f(x2)-f(x1)的符號,當符號不確定時,可以進行分類討論.④判斷.根據單調性定義作出結論.簡稱為:“去、比、賽”,其中第②③步為比較的過程.<3>判斷函數的奇偶性:一是利用定義法,即首先是定義域關于原點對稱,再次是考察式子f(x)與f(-x)的關系,最后確定函數的奇偶性;二是作出函數圖象或從已知圖象觀察,若圖象關于原點或y軸對稱,則函數具有奇偶性.(作圖法只適用于選擇填空題目,而不能用于大題的解答,這一點請同學們注意).【教學效果】:這一部分學生都能回憶起來,老師講解過后學生的印象更為深刻,這些知識老師要反復的說,學生才能記得牢固.指數類(指數函數模型)復合函數定義域、值域問題(教師注意:第2題主要滲透數形結合的思想,第2題的第<4>小題不要求全體學生都會,建議把答案寫在黑板上,讓有能力的同學自己去做.題目有難易,部分同學不會做是正常現象.第<4>小題要涉及分離常數法和有界性解題,這兩種方法老師要單獨的給基礎好、悟性好的同學點明.并且這一部分還設計復合函數,這是一個難點,也是一個考點,第3題就講了復合函數單調性問題,在第2題,老師要提出這個名詞,并稍加解釋,但是不宜過于深入,若過于深入,就本末倒置了.)2、求下列函數的定義域、值域:<1>y=0.4;<2>y=3;<3>y=2x+1;<4>y=.結論:<1>由x-1≠0得x≠1,所以所求函數定義域為{x|x≠1}.由x≠1得y≠1,即函數值域為{y|y>0且y≠1};<2>由5x-1≥0得x≥,所以所求函數定義域為{x|x≥}.由≥0得y≥1,所以函數值域為{y|y≥1};<3>所求函數定義域為R,由2x>0可得2x+1>1,所以函數值域為{y|y>1};<4>由已知得:函數的定義域是R,且(2x+1)y=2x-2,即(y-1)2x=-y-2.因為y≠1,所以2x=.又x∈R,所以2x>0,>0.解之,得-2<y<1.因此函數的值域為{y|-2<y<1}.【教學效果】:通過學習學生基本上都能掌握住學習方法,教學效果很不錯.第<4>個作為思考題給基礎好的同學講解,效果也很不錯.這一部分特別滲透了數形結合的思想,用函數的單調性這一工具解題,收到了良好的效果.歸納:通過此例題的訓練,學會利用指數函數的定義域、值域去求解指數形式的復合函數的定義域、值域,還應注意書寫步驟與格式的規范性.練習:求函數y=()的定義域和值域.結論:要使函數有意義,必須x+3≠0,即x≠-3,即函數的定義域是{x|x≠-3}.因為≠0,所以y=()≠()0=1.又因為y>0,所以值域為(0,1)∪(1,+∞).【教師注意】:第一題實際上是一類簡單的求定義域值域問題,中間還涉及到了復合函數,新課標對復合函數的定義域值域的要求還不明朗,但是還是要講一講,不挖深即可.指數類(指數函數模型)復合函數單調性問題3、(約10分鐘)求函數y=()的單調區間,并證明.結論:設u=x2-2x,則y=()u,對任意的1<x1<x2,有u1<u2,又因為y=()u是減函數,所以y1<y2,所以y=()在[1,+∞)是減函數.對任意的x1<x2≤1,有u1>u2,又因為y=()u是減函數,所以y1<y2.所以y=()在(-∞,1]上是增函數.引申:求函數y=()的值域(0<y≤2).引申:求函數y=()的值域(0<y≤2).【小知識】:對于復合函數y=f(g(x))可以總結為:當函數f(x)和g(x)的單調性相同時,復合函數y=f(g(x))是增函數;當函數f(x)和g(x)的單調性相異即不同時,復合函數y=f(g(x))是減函數;又簡稱為口訣“同增異減”.【教學效果】:應該說高考對于復合函數的單調性的證明要求不高,但是對于復合函數的單調區間的判斷要求比較高,在選擇題、填空題和計算題目中都有所涉及.這一部分我沒有在證明過程上過度的糾纏,而是講明白講清楚即可.我重點講解了復合函數單調性的判斷,即怎樣判斷函數的單調性,取得了良好的效果.【教師注意】:總結一些口訣,對于學生的學習很有利的.譬如平移的法則我總結為“正減負加”,單調性總結為“步調一致增函數,步調不一致減函數”,單調性的證明步驟總結為“去比賽”,復合函數的單調性總結為“正減負加”等等.指數類(指數函數模型)奇偶性問題(教師注意:第4題事實上是屬于抽象類函數,是高考的考點,抽象類函數學生不是很好理解,老師要通過教學逐步的深入,循序漸進,遵循學生的認知規律,才能把這一部分講好,才能使學生掌握好.)4、已知奇函數,偶函數滿足+=(),求證:提示:根據題目所給條件求出和,代入即可證明.【教學效果】:這個題目屬于比較抽象的題目,由于前邊有類似的題目,所以這個題目學生還是能接受的.指數類(指數函數模型)圖像(主要是平移)問題5、在同一坐標系中作出下列函數的圖象,討論它們之間的聯系.(約10分鐘)<1>①y=3x,②y=3x+1,③y=3x-1;<2>①y=()x,②y=()x-1,③y=()x+1.結論:如下圖:可以看出,y=3x,y=3x+1,y=3x-1的圖象間有如下關系:y=3x+1的圖象由y=3x的圖象左移1個單位得到;y=3x-1的圖象由y=3x的圖象右移1個單位得到;y=3x-1的圖象由y=3x+1的圖象向右移動2個單位得到.y=()x,y=()x-1,y=()x+1的圖象間有如下關系:y=()x+1的圖象由y=()x的圖象左移1個單位得到;y=()x-1的圖象由y=()x的圖象右移1個單位得到;y=()x-1的圖象由y=()x+1的圖象向右移動2個單位得到.引申:你能推廣到一般的情形嗎?同學們留作思考.【教學效果】:對于函數的平移,初中我們已經學習過,而且暑期補課的時候也講過一些,所以學生們還是很能理解的.這里只是舉出了左右平移,上下平移在以后的講解過程中還會進一步的體現.這一部分學生的學習效果是很好的.三、【作業】1、第一次作業:教材第59頁習題2.1A組第7題、第8題;2、第二次作業:學案第二部分練習,第三部分引申.【注】:本學案需要兩個課時講解,第一課時講1、2、4題,第二課時講5、3題,所以作業也分為了兩次.四、【小結】這一部分主要學習了指數類復合函數的單調性、值域、定義域、奇偶性、圖像平移等問題,滲透了數形結合的數學思想,運用了變量代換的數學方法,老師們在講解題目的時候不單單要講這個題目,還要注意思想方法的總結,這樣才能提高學生的學習成績.【反思】臺上一分鐘,臺下十年功.老師們要想教好自己的課,是很不容易的.這節課我做了大量的充分的準備,進行了分層教學,教學效果和預期的一樣,達到了自己預期的教學目標.其中題目要分層次,譬如第二部分的四個題目,第三個是每個學生都要會的,第<1>、<2>個是中等學生要掌握的,第<4>個是尖子生要掌握的.進行了這些分層,教學就有針對性了,給了每一個學生一個臺階,給他們都能上去的臺階,事實上,這才是我們教師的職業操守.我們的老師都在抱怨我們的學生怎么怎么差,說起來義憤填膺,事實上你有沒有站在學生的角度來看一看?差有差的教法,現實擺在我們眼前,我們不說怎么去解決它,而是去抱怨他,是很沒有道理的.最差的一名學生也有閃光點,你看到了嗎?當你罵這個學生是“垃圾,蠢貨,他媽的王八蛋”的時候,有沒有想過怎樣才能使他們變得不是“垃圾
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安全工程試題及答案
- 城市快速路建設項目2025年社會穩定風險評估與城市規劃與社區互動研究報告
- 工業互聯網平臺入侵檢測系統2025年數據安全防護方案報告
- 《庫存管理》課件
- 冬季換季教育培訓課件
- 中國發展動態課件
- 數碼影像培訓課件
- 周末安全教學課件
- 員工職業規劃課件
- 團委培訓分享交流
- 學校教學設備設施安全管理制度(3篇)
- 森林消防專業實習總結范文
- DB32T 2677-2014 公路涉路工程安全影響評價報告編制標準
- 軟件正版化培訓
- 《電力電子技術(第二版) 》 課件 項目五 交流調壓電路-調試電風扇無級調速器
- 無人駕駛汽車路測與數據收集服務合同
- 【碳足跡報告】新鄉市錦源化工對位脂產品碳足跡報告
- 部編版七年級下冊歷史期末復習開卷考試知識點速查提綱
- 《ESPEN重癥病人營養指南(2023版)》解讀課件
- 華夏航空在線測評題
- 海南省海口市(2024年-2025年小學四年級語文)人教版期末考試((上下)學期)試卷及答案
評論
0/150
提交評論