哈爾濱市重點中學2025屆數學高二上期末經典試題含解析_第1頁
哈爾濱市重點中學2025屆數學高二上期末經典試題含解析_第2頁
哈爾濱市重點中學2025屆數學高二上期末經典試題含解析_第3頁
哈爾濱市重點中學2025屆數學高二上期末經典試題含解析_第4頁
哈爾濱市重點中學2025屆數學高二上期末經典試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

哈爾濱市重點中學2025屆數學高二上期末經典試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線與圓相切,則實數等于()A.或 B.或C.3或5 D.5或32.校慶當天,學校需要在靠墻的位置用圍欄圍起一個面積為200平方米的矩形場地.用來展示校友的書畫作品.靠墻一側不需要圍欄,則圍欄總長最小需要()米A.20 B.40C. D.3.將直線繞著原點逆時針旋轉,得到新直線的斜率是()A. B.C. D.4.已知平面直角坐標系內一動點P,滿足圓上存在一點Q使得,則所有滿足條件的點P構成圖形的面積為()A. B.C. D.5.若拋物線焦點坐標為,則的值為A. B.C.8 D.46.圓心,半徑為的圓的方程是()A. B.C. D.7.下列求導不正確的是()A B.C. D.8.已知命題:;:若,則,則下列判斷正確的是()A.為真,為真,為假 B.為真,為假,為真C.為假,為假,為假 D.為真,為假,為假9.中秋節吃月餅是我國的傳統習俗,若一盤中共有兩種月餅,其中5塊五仁月餅、6塊棗泥月餅,現從盤中任取3塊,在取到的都是同種月餅的條件下,都是五仁月餅的概率是()A B.C. D.10.為了解一片大約一萬株樹木的生長情況,隨機測量了其中100株樹木的底部周長(單位:㎝).根據所得數據畫出的樣本頻率分布直方圖如圖,那么在這片樹木中,底部周長小于110㎝的株樹大約是()A.3000 B.6000C.7000 D.800011.已知,,,則點C到直線AB的距離為()A.3 B.C. D.12.設命題,,則為().A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.已知曲線的焦距是10,曲線上的點到一個焦點的距離是2,則點到另一個焦點的距離為__________.14.已知數列的前項和為,且滿足,若對于任意的,不等式恒成立,則實數的取值范圍為____________.15.已知雙曲線的漸近線上兩點A,B的中點坐標為(2,2),則直線AB的斜率是_________.16.已知向量,向量,若,則實數的值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,直三棱柱中,底面是邊長為2的等邊三角形,D為棱AC中點.(1)證明:AB1//平面;(2)若面B1BC1與面BC1D的夾角余弦值為,求.18.(12分)如圖,在三棱錐中,平面平面,,都是等腰直角三角形,,,,分別為,的中點.(1)求證:平面;(2)求證:平面.19.(12分)已知橢圓的左、右焦點分別為、,離心率,且過點(1)求橢圓C的方程;(2)已知過的直線l交橢圓C于A、B兩點,試探究在平面內是否存在定點Q,使得是一個確定的常數?若存在,求出點Q的坐標;若不存在,說明理由20.(12分)已知數列滿足,,且成等比數列(1)求的值和的通項公式;(2)設,求數列的前項和21.(12分)已知函數(1)討論函數的單調性;(2)證明:對任意正整數n,22.(10分)某校高三年級進行了一次數學測試,全年級學生的成績都落在區間內,其成績的頻率分布直方圖如圖所示,若(1)求a,b的值;(2)若成績落在區間內的人數為36人,請估計該校高三學生的人數

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先求出圓的圓心和半徑,再利用圓心到直線的距離等于半徑列方程可求得結果【詳解】由,得,則圓心為,半徑為2,因為直線與圓相切,所以,得,解得或,故選:C2、B【解析】在出矩形中,設,得到,結合基本不等式,即可求解【詳解】如圖所示,在矩形中,設,則,根據題意,可得矩形圍欄總長為因為,可得,當且僅當時,即時,等號成立,即圍欄總長最小需要米.故選:B.3、B【解析】由題意知直線的斜率為,設其傾斜角為,將直線繞著原點逆時針旋轉,得到新直線的斜率為,化簡求值即可得到答案.【詳解】由知斜率為,設其傾斜角為,則,將直線繞著原點逆時針旋轉,則故新直線的斜率是.故選:B.4、D【解析】先找臨界情況當PQ與圓C相切時,,進而可得滿足條件的點P形成的圖形為大圓(包括內部),即求.【詳解】當PQ與圓C相切時,,這種情況為臨界情況,當P往外時無法找到點Q使,當P往里時,可以找到Q使,故滿足條件的點P形成的圖形為大圓(包括內部),如圖,由圓,可知圓心,半徑為1,則大圓的半徑為,∴所有滿足條件的點P構成圖形的面積為.故選:D.【點睛】關鍵點點睛:本題的關鍵是找出臨界情況時點所滿足的條件,進而即可得到動點滿足條件的圖形,問題即可解決.5、A【解析】先把拋物線方程整理成標準方程,進而根據拋物線的焦點坐標,可得的值.【詳解】拋物線的標準方程為,因為拋物線的焦點坐標為,所以,所以,故選A.【點睛】該題考查的是有關利用拋物線的焦點坐標求拋物線的方程的問題,涉及到的知識點有拋物線的簡單幾何性質,屬于簡單題目.6、D【解析】根據圓心坐標及半徑,即可得到圓的方程.【詳解】因為圓心為,半徑為,所以圓的方程為:.故選:D.7、C【解析】由導數的運算法則、復合函數的求導法則計算后可判斷【詳解】A:;B:;C:;D:故選:C8、D【解析】先判斷出命題,的真假,即可判斷.【詳解】因為成立,所以命題為真,由可得或,所以命題為假命題,所以為真,為假,為假.故選:D.9、C【解析】分別求出取到3塊月餅都是同種月餅和取到3塊月餅都是五仁月餅的種數,再根據概率公式即可得解.【詳解】解:由題意可得,取到3塊月餅都是同種月餅有種情況,取到3塊月餅都是五仁月餅有種情況,所以在取到的都是同種月餅的條件下,都是五仁月餅的概率是.故選:C.10、C【解析】先由頻率分布直方圖得到抽取的樣本中底部周長小于110㎝的概率,進而可求出結果.【詳解】由頻率分布直方圖可得,樣本中底部周長小于110㎝的概率為,因此在這片樹木中,底部周長小于110㎝的株樹大約是.故選:C.【點睛】本題主要考查頻率分布直方圖的應用,屬于基礎題型.11、D【解析】應用空間向量的坐標運算求在上投影長及的模長,再應用勾股定理求點C到直線AB的距離.【詳解】因為,,所以設點C到直線AB的距離為d,則故選:D12、B【解析】根據全稱命題和特稱命題互為否定,即可得到結果.【詳解】因為命題,,所以為,.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、或10.【解析】對參數a進行討論,考慮曲線是橢圓和雙曲線的情況,進而結合橢圓與雙曲線的定義和性質求得答案.【詳解】由題意,曲線的半焦距為5,若曲線是焦點在x軸上的橢圓,則a>16,所以,而橢圓上的點到一個焦點距離是2,則點到另一個焦點的距離為;若曲線是焦點在y軸上的橢圓,則0<a<16,所以,舍去;若曲線是雙曲線,則a<0,容易判斷雙曲線的焦點在y軸,所以,不妨設點P在雙曲線的上半支,上下焦點分別為,因為實半軸長為4,容易判斷點P到下焦點的距離的最小值為4+5=9>2,不合題意,所以點P到上焦點的距離為2,則它到下焦點的距離.故答案為:或10.14、【解析】先求出,然后當時,由,得,兩式相減可求出,再驗證,從而可得數列為等比數列,進而可求出,再將問題轉化為在上恒成立,所以,從而可求出實數的取值范圍【詳解】當時,,得,當時,由,得,兩式相減得,得,滿足此式,所以,因為,所以數列是以為公比,為首項的等比數列,所以,所以對于任意的,不等式恒成立,可轉化為對于任意的,恒成立,即在上恒成立,所以,解得或,所以實數的取值范圍為故答案為:【點睛】關鍵點點睛:此題考查數列通項公的求法,等比數列求和公式的應用,考查不等式恒成立問題,解題的關鍵是求出數列的通項公式后求得,再將問題轉化為在上恒成立求解即可,考查數學轉化思想,屬于較難題15、##【解析】設出直線的方程,通過聯立直線的方程和漸近線的方程,結合中點的坐標來求得直線的斜率.【詳解】雙曲線,,漸近線方程為,設直線的方程為,,由,由,所以,所以直線的斜率是.故答案為:16、2【解析】根據,由求解.【詳解】因為向量,向量,且,所以,解得,故答案為:2三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)連接,使,連接,即可得到,從而得證;(2)設,以為坐標原點建立空間直角坐標系,求出平面的法向量,平面的法向量,利用空間向量的數量積求解面與面的夾角余弦值為,從而得到方程,解得即可【小問1詳解】證明:如圖,連,使,連,由直三棱柱,所以四邊形為矩形,所以為中點,在中,、分別為和中點,,又因平面平面,面,面,平面【小問2詳解】解:設,以為坐標原點如圖建系,則,,所以、,設平面的法向量則,故可取設平面的法向量,則,故可取,因為面與面的夾角余弦值為,所以,即,解得,18、(1)證明見解析(2)證明見解析【解析】(1)由三角形的中位線定理可證得MN∥AB,再由線面垂直的判定定理可證得結論,(2)由已知可得AB⊥BC,VC⊥AC,再由已知結合面面垂直的性質定理可得VC⊥平面ABC,從而有AB⊥VC,然后由線面垂直的判定定理可證得結論【小問1詳解】證明:∵M,N分別為VA,VB的中點,∴MN∥AB,∵AB?平面CMN,MN?平面CMN,∴AB∥平面CMN【小問2詳解】證明:∵△ABC和△VAC均是等腰直角三角形,AB=BC,AC=CV,∴AB⊥BC,VC⊥AC,∵平面VAC⊥平面ABC,平面VAC∩平面ABC=AC,∴VC⊥平面ABC,∵AB?平面ABC,∴AB⊥VC,又VC∩BC=C,∴AB⊥平面VBC19、(1)(2)存在,定點【解析】(1)根據已知條件求得,由此求得橢圓的方程.(2)對直線的斜率是否存在進行分類討論,設出直線的方程并與橢圓方程聯立,結合是常數列方程,從而求得定點的坐標.小問1詳解】,,由題可得:.【小問2詳解】當直線AB的斜率存在時,設直線AB的方程為,設,,聯立方程組,整理得,可得,所以則恒成立,則,解得,,,此時,即存在定點滿足條件當直線AB的斜率不存在時,直線AB的方程為x=-2,可得,,設要使得是一個常數,即,顯然,也使得成立;綜上所述:存在定點滿足條件.20、(1);;(2)【解析】(1)由于,所以可得,再由成等比數列,列方程可求出,從而可求出的通項公式;(2)由(1)可得,然后利用錯位相減法求【詳解】解:(1)數列{an}滿足,所以,所以a2+a3=a1+a2+d,由于a1=1,a2=1,所以a2+a3=2+d,a8+a9=2+7d,且a1,a2+a3,a8+a9成等比數列,所以,整理得d=1或2(1舍去)故an+2=an+2,所以n奇數時,an=n,n為偶數時,an=n﹣1所以數列{an}的通項公式為(2)由于,所以所以T2n=b1+b2+...+b2n=﹣20×12+20×22﹣22×32+22×42+...+[﹣22n﹣2?(2n﹣1)2]+22n﹣2?(2n)2,=20×(22﹣12)+22×(42﹣32)+...+22n﹣2?[(2n)2﹣(2n﹣1)2]=20×3+22×7+...+22n﹣2?(4n﹣1)①,所以,②,①﹣②得:﹣3T2n=20×3+22×4+...+22n﹣2×4﹣22n×(4n﹣1),=3+4×﹣22n×(4n﹣1),=,所以21、(1)見解析(2)見解析【解析】(1)由,令,得,或,又的定義域為,討論兩個根及的大小關系,即可判定函數的單調性;(2)當時,在,上遞減,則,即,由此能夠證明【小問1詳解】的定義域為,,令,得,或,①當,即時,若,則,遞增;若,則,遞減;②當,即時,若,則,遞減;若,則,遞增;若,則,遞減;綜上所述,當-2<a<0時,f(x)在,單調遞減,在單調遞增;當a≥0時,f(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論