




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川廣元天立學校2025屆高二數學第一學期期末檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設拋物線的焦點為,準線與軸的交點為,是上一點,若,則()A. B.C. D.2.曲線上的點到直線的距離的最小值是()A.3 B.C.2 D.3.在等差數列中,已知,則數列的前6項之和為()A.12 B.32C.36 D.724.現有甲、乙、丙、丁、戊五位同學,分別帶著A、B、C、D、E五個不同的禮物參加“抽盲盒”學游戲,先將五個禮物分別放入五個相同的盒子里,每位同學再分別隨機抽取一個盒子,恰有一位同學拿到自己禮物的概率為()A. B.C. D.5.若方程表示雙曲線,則的取值范圍是()A.或 B.C.或 D.6.已知圓與圓,則圓M與圓N的位置關系是()A.內含 B.相交C.外切 D.外離7.已知實數、滿足,則的最大值為()A. B.C. D.8.在空間直角坐標系中,點關于軸對稱的點的坐標為()A. B.C. D.9.從0,1,2,3,4,5這六個數字中,任取兩個不同數字構成平面直角坐標系內點的橫、縱坐標,其中不在軸上的點有()A.36個 B.30個C.25個 D.20個10.設為直線上任意一點,過總能作圓的切線,則的最大值為()A. B.1C. D.11.已知雙曲線C的離心率為,則雙曲線C的漸近線方程為()A. B.C. D.12.已知函數,則()A.函數的極大值為,無極小值 B.函數的極小值為,無極大值C.函數的極大值為0,無極小值 D.函數的極小值為0,無極大值二、填空題:本題共4小題,每小題5分,共20分。13.已知數列的前n項和為,且滿足通項公式,則________14.給定點、、與點,求點到平面的距離______.15.若函數是上的增函數,則實數的取值范圍是__________.16.下圖是個幾何體的展開圖,圖①是由個邊長為的正三角形組成;圖②是由四個邊長為的正三角形和一個邊長為的正方形組成;圖③是由個邊長為的正三角形組成;圖④是由個邊長為的正方形組成.若幾何體能夠穿過直徑為的圓,則該幾何體的展開圖可以是______(填所有正確結論的序號).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,且其左頂點到右焦點的距離為.(1)求橢圓的方程;(2)設點、在橢圓上,以線段為直徑的圓過原點,試問是否存在定點,使得到直線的距離為定值?若存在,請求出點坐標;若不存在,請說理由.18.(12分)已知定義域為的函數是奇函數,其中為指數函數且的圖象過點(1)求的表達式;(2)若對任意的.不等式恒成立,求實數的取值范圍;19.(12分)已知兩圓x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0(1)m取何值時兩圓外切?(2)m取何值時兩圓內切?(3)當m=45時,求兩圓公共弦所在直線的方程和公共弦的長20.(12分)已知點,,設動點P滿足直線PA與PB的斜率之積為,記動點P的軌跡為曲線E(1)求曲線E的方程;(2)若動直線l經過點,且與曲線E交于C,D(不同于A,B)兩點,問:直線AC與BD的斜率之比是否為定值?若為定值,求出該定值;若不為定值,請說明理由21.(12分)已知數列是正項數列,,且.(1)求數列的通項公式;(2)設,數列的前項和為,若對恒成立,求實數的取值范圍.22.(10分)從某居民區隨機抽取2021年的10個家庭,獲得第個家庭的月收入(單位:千元)與月儲蓄(單位:千元)的數據資料,計算得,,,(1)求家庭的月儲蓄對月收入的線性回歸方程;(2)判斷變量與之間是正相關還是負相關;(3)利用(1)中的回歸方程,分析2021年該地區居民月收入與月儲蓄之間的變化情況,并預測當該居民區某家庭月收入為7千元,該家庭的月儲蓄額.附:線性回歸方程系數公式中,,,其中,為樣本平均值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】求出拋物線的準線方程,可得出點的坐標,利用拋物線的定義可求得點的坐標,再利用兩點間的距離公式可求得結果.【詳解】易知拋物線焦點為,準線方程為,可得準線與軸的交點,設點,由拋物線的性質,,可得,所以,,解得,即點,所以.故選:D.2、D【解析】求出函數的導函數,設切點為,依題意即過切點的切線恰好與直線平行,此時切點到直線的距離最小,求出切點坐標,再利用點到直線的距離公式計算可得;【詳解】解:因為,所以,設切點為,則,解得,所以切點為,點到直線的距離,所以曲線上的點到直線的距離的最小值是;故選:D3、C【解析】利用等差數列的求和公式結合角標和定理即可求解.【詳解】解:等差數列中,所以等差數列的前6項之和為:故選:C.4、D【解析】利用排列組合知識求出每位同學再分別隨機抽取一個盒子,恰有一位同學拿到自己禮物的情況個數,以及五人抽取五個禮物的總情況,兩者相除即可.【詳解】先從五人中抽取一人,恰好拿到自己禮物,有種情況,接下來的四人分為兩種情況,一種是兩兩一對,兩個人都拿到對方的禮物,有種情況,另一種是四個人都拿到另外一個人的禮物,不是兩兩一對,都拿到對方的情況,由種情況,綜上:共有種情況,而五人抽五個禮物總數為種情況,故恰有一位同學拿到自己禮物的概率為.故選:D5、A【解析】由和的分母異號可得【詳解】由題意,解得或故選:A6、B【解析】將兩圓方程化為標準方程形式,計算圓心距,和兩圓半徑的和差比較,可得答案,【詳解】圓,即,圓心,圓,即,圓心,則故有,所以兩圓是相交的關系,故選:B7、A【解析】作出可行域,利用代數式的幾何意義,利用數形結合可求得的最大值.【詳解】作出不等式組所表示的可行域如下圖所示:聯立可得,即點,代數式的幾何意義是連接可行域內一點與定點連線的斜率,由圖可知,當點在可行域內運動時,直線的傾斜角為銳角,當點與點重合時,直線的傾斜角最大,此時取最大值,即.故選:A.8、B【解析】結合已知條件,利用對稱的概念即可求解.【詳解】不妨設點關于軸對稱的點的坐標為,則線段垂直于軸且的中點在軸,從而點關于軸對稱的點的坐標為.故選:B.9、C【解析】根據點不在y軸上,分2類根據分類加法計數原理求解.【詳解】因為點不在軸上,所以點的橫坐標不能為0,分兩類考慮,第一類含0且為點的縱坐標,共有個點,第二類坐標不含0的點,共有個點,根據分類加法計數原理可得共有個點.故選:C10、D【解析】根據題意,判斷點與圓的位置關系以及直線與圓的位置關系,根據直線與圓的位置關系,即可求得的最大值.【詳解】因為過過總能作圓的切線,故點在圓外或圓上,也即直線與圓相離或相切,則,即,解得,故的最大值為.故選:D.11、B【解析】根據雙曲線的離心率,求出即可得到結論【詳解】∵雙曲線的離心率是,∴,即1+,即1,則,即雙曲線的漸近線方程為,故選:B12、A【解析】利用導數來求得的極值.【詳解】的定義域為,,在遞增;在遞減,所以的極大值為,沒有極小值.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由時,,可得,利用累乘法得,從而即可求解.【詳解】因為,所以時,,即,化簡得,又,所以,檢驗時也成立,所以,所以,故答案:.14、【解析】先求出平面的法向量,再利用點到面的距離公式計算即可.【詳解】設平面的法向量為,點到平面的距離為,,,即,令,得故答案為:.15、【解析】由題意知在上恒成立,從而結合一元二次不等式恒成立問題,可列出關于的不等式,進而可求其取值范圍.【詳解】解:由題意知,知在上恒成立,則只需,解得.故答案為:.【點睛】本題考查了不等式恒成立問題,考查了運用導數探究函數的單調性.一般地,由增函數可得導數不小于零,由減函數可得導數不大于零.對于一元二次不等式在上恒成立問題,如若在上恒成立,可得;若在上恒成立,可得.16、①【解析】根據幾何體展開圖可知①正四面體、②正四棱錐、③正八面體、④正方體,進而求其外接球半徑,并與比較大小,即可確定答案.【詳解】①由題設,幾何體為棱長為的正四面體,該正四面體可放入一個正方體中,且正方體的棱長為,該正四面體的外接球半徑為,滿足要求;②由題設,幾何體為棱長為的正四棱錐,如下圖所示:設,連接,則為、的中點,因為四邊形是邊長為的正方形,則,所以,,所以,,所以,,,所以點為正四棱錐的外接球球心,且該球的半徑為,不滿足要求;③由題設,幾何體為棱長為的正八面體,該正八面體可由兩個共底面,且棱長均為的正四棱錐拼接而成,由②可知,該正八面體的外接球半徑為,不滿足要求;④由題設,幾何體為棱長為的正方體,其外接球半徑為,不滿足要求;故答案為:①.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,.【解析】(1)由題設可知求出,再結合,從而可求出橢圓的方程,(2)①若直線與軸垂直,由對稱性可知,代入橢圓方程可求得結果,②若直線不與軸垂直,設直線的方程為,將直線方程與橢圓方程聯立方程組,消去,然后利用根與系數的關系,設,,再由條件,得,從而得,再利用點到直線的距離公式可求得結果【詳解】(1)由題設可知解得,,,所以橢圓的方程為:;(2)設,,①若直線與軸垂直,由對稱性可知,將點代入橢圓方程,解得,原點到該直線的距離;②若直線不與軸垂直,設直線的方程為,由消去得,則由條件,即,由韋達定理得,整理得,則原點到該直線的距離;故存在定點,使得到直線的距離為定值.18、(1);(2).【解析】(1)設(且),因為的圖象過點,求得a的值,再根據函數f(x)是奇函數,利用f(0)=0即可求得n的值,得到f(x)的解析式,檢驗是奇函數即可;(2)將分式分離常數后,利用指數函數的性質可以判定f(x)在R上單調遞減,進而結合奇函數的性質將不等式轉化為二次不等式,根據二次函數的圖象和性質,求得對于對任意的恒成立時a的取值范圍即可.【詳解】解:(1)由題意,設(且),因為的圖象過點,可得,解得,即,所以,又因為為上的奇函數,可得,即,解得,經檢驗,符合,所以(2)由函數,可得在上單調遞減,又因為為奇函數,所以,所以,即,又因為對任意的,不等式恒成立,令,即對任意的恒成立,可得,即,解得,所以實數的取值范圍為【點睛】本題考查函數的奇偶性,指數函數及其性質和函數不等式恒成立問題,關鍵是利用函數的單調性和奇偶性將不等式轉化為二次不等式在閉區間上恒成立問題,然后利用二次函數的圖象轉化為二次函數的端點值滿足的條件.另外注意,第一問中,利用特值f(0)=0求得解析式后,要注意檢驗對于任意的實數x,f(x)=-f(-x)恒成立.19、(1)(2)(3)直線方程為4x+3y-23=0,弦長為【解析】(1)先把兩個圓的方程化為標準形式,求出圓心和半徑,再根據兩圓的圓心距等于兩圓的半徑之和,求得m的值;(2)由兩圓的圓心距等于兩圓的半徑之差為,求得m的值.(3)當m=45時,把兩個圓的方程相減,可得公共弦所在的直線方程.求出第一個圓的圓心(1,3)到公共弦所在的直線的距離d,再利用弦長公式求得弦長試題解析:(1)由已知可得兩個圓的方程分別為(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=61-m,兩圓的圓心距d==5,兩圓的半徑之和為+,由兩圓的半徑之和為+=5,可得m=(2)由兩圓的圓心距d=="5"等于兩圓的半徑之差為|-|,即|-|=5,可得-="5"(舍去),或-=-5,解得m=(3)當m=45時,兩圓的方程分別為(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=16,把兩個圓的方程相減,可得公共弦所在的直線方程為4x+3y-23=0第一個圓的圓心(1,3)到公共弦所在的直線的距離為d==2,可得弦長為考點:1.兩圓相切的位置關系;2.兩圓相交的公共弦問題20、(1);(2)直線AC和BD的斜率之比為定值【解析】(1)設,依據兩點的斜率公式可求得曲線E的方程(2)設直線l:,,,聯立方程得,得出根與系數的關系,表示直線AC的斜率,直線BD的斜率,并代入計算,可得其定值.【詳解】解:(1)設,依題意可得,所以,所以曲線E的方程為(2)依題意,可設直線l:,,,由,可得,則,,因為直線AC的斜率,直線BD的斜率,因為,所以,所以直線AC和BD的斜率之比為定值21、(1)(2)【解析】(1)由條件因式分解可得,從而得到,即可得出答案.(2)由(1)可得,由錯位相減法求和得到,由題意即即對恒成立,分析數列的單調性,得出答案.【小問1詳解】由,得∵∴∴∴數列是公比為2的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 爆破與安全試題及答案
- 保溫工考試試題及答案
- 安全師試題及答案
- 物聯網設備安全漏洞檢測與防護策略在智能交通信號控制系統中的實戰解析報告
- 2025年快時尚零售行業供應鏈優化與變革分析報告
- 安全教育考試試題及答案
- 安全規程考試試題及答案
- 職業教育未來趨勢:2025年職業院校與企業深度合作研究報告
- 2025年醫院信息化建設關鍵環節:電子病歷系統醫療信息化戰略規劃報告
- 大學生膳食營養與健康
- 2025年廣東省廣州市越秀區第十六中學中考二模數學試卷(含部分答案)
- 2025年湖南省中考語文試卷真題及答案詳解(精校打印版)
- 2025年湖北省高考政治試卷真題(含答案解析)
- 供電施工安全培訓課件
- 櫥柜廠規章管理制度
- 北京市西城區2023-2024學年六年級下學期數學期末檢測試卷(含答案)
- 初三中考數學最后一課-主題班會【課件】
- 2024年北京東城區中考地理試卷真題及答案詳解
- 2025益陽市赫山區中小學教師招聘考試試題及答案
- 發動機質保協議書合同
- 2025年中國建筑鋼結構產品市場調查研究報告
評論
0/150
提交評論