2025屆新疆北京師范大學克拉瑪依附屬學校高三數學第一學期期末學業水平測試試題含解析_第1頁
2025屆新疆北京師范大學克拉瑪依附屬學校高三數學第一學期期末學業水平測試試題含解析_第2頁
2025屆新疆北京師范大學克拉瑪依附屬學校高三數學第一學期期末學業水平測試試題含解析_第3頁
2025屆新疆北京師范大學克拉瑪依附屬學校高三數學第一學期期末學業水平測試試題含解析_第4頁
2025屆新疆北京師范大學克拉瑪依附屬學校高三數學第一學期期末學業水平測試試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆新疆北京師范大學克拉瑪依附屬學校高三數學第一學期期末學業水平測試試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數x,y滿足約束條件,若的最大值為2,則實數k的值為()A.1 B. C.2 D.2.已知雙曲線C:=1(a>0,b>0)的右焦點為F,過原點O作斜率為的直線交C的右支于點A,若|OA|=|OF|,則雙曲線的離心率為()A. B. C.2 D.+13.已知F是雙曲線(k為常數)的一個焦點,則點F到雙曲線C的一條漸近線的距離為()A.2k B.4k C.4 D.24.如圖,正四面體的體積為,底面積為,是高的中點,過的平面與棱、、分別交于、、,設三棱錐的體積為,截面三角形的面積為,則()A., B.,C., D.,5.已知,是雙曲線的兩個焦點,過點且垂直于軸的直線與相交于,兩點,若,則△的內切圓的半徑為()A. B. C. D.6.如圖在一個的二面角的棱有兩個點,線段分別在這個二面角的兩個半平面內,且都垂直于棱,且,則的長為()A.4 B. C.2 D.7.已知某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B.64 C. D.328.從裝有除顏色外完全相同的3個白球和個黑球的布袋中隨機摸取一球,有放回的摸取5次,設摸得白球數為,已知,則A. B. C. D.9.設,則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件10.雙曲線x26-y23=1的漸近線與圓(x-3)2+y2=A.3 B.2C.3 D.611.已知的部分圖象如圖所示,則的表達式是()A. B.C. D.12.要排出高三某班一天中,語文、數學、英語各節,自習課節的功課表,其中上午節,下午節,若要求節語文課必須相鄰且節數學課也必須相鄰(注意:上午第五節和下午第一節不算相鄰),則不同的排法種數是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在矩形ABCD中,,,點E,F分別為BC,CD邊上動點,且滿足,則的最大值為________.14.若復數z滿足,其中i是虛數單位,則z的模是______.15.一個長、寬、高分別為1、2、2的長方體可以在一個圓柱形容器內任意轉動,則容器體積的最小值為_________.16.已知,滿足約束條件則的最大值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的右焦點為,離心率為.(1)若,求橢圓的方程;(2)設直線與橢圓相交于、兩點,、分別為線段、的中點,若坐標原點在以為直徑的圓上,且,求的取值范圍.18.(12分)過點P(-4,0)的動直線l與拋物線相交于D、E兩點,已知當l的斜率為時,.(1)求拋物線C的方程;(2)設的中垂線在軸上的截距為,求的取值范圍.19.(12分)甲、乙兩班各派三名同學參加知識競賽,每人回答一個問題,答對得10分,答錯得0分,假設甲班三名同學答對的概率都是,乙班三名同學答對的概率分別是,,,且這六名同學答題正確與否相互之間沒有影響.(1)記“甲、乙兩班總得分之和是60分”為事件,求事件發生的概率;(2)用表示甲班總得分,求隨機變量的概率分布和數學期望.20.(12分)已知,,為正數,且,證明:(1);(2).21.(12分)已知函數.(1)討論的單調性;(2)若函數在上存在兩個極值點,,且,證明.22.(10分)設點分別是橢圓的左,右焦點,為橢圓上任意一點,且的最小值為1.(1)求橢圓的方程;(2)如圖,直線與軸交于點,過點且斜率的直線與橢圓交于兩點,為線段的中點,直線交直線于點,證明:直線.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

畫出約束條件的可行域,利用目標函數的幾何意義,求出最優解,轉化求解即可.【詳解】可行域如圖中陰影部分所示,,,要使得z能取到最大值,則,當時,x在點B處取得最大值,即,得;當時,z在點C處取得最大值,即,得(舍去).故選:B.【點睛】本題考查由目標函數最值求解參數值,數形結合思想,分類討論是解題的關鍵,屬于中檔題.2、B【解析】

以為圓心,以為半徑的圓的方程為,聯立,可求出點,則,整理計算可得離心率.【詳解】解:以為圓心,以為半徑的圓的方程為,聯立,取第一象限的解得,即,則,整理得,則(舍去),,.故選:B.【點睛】本題考查雙曲線離心率的求解,考查學生的計算能力,是中檔題.3、D【解析】

分析可得,再去絕對值化簡成標準形式,進而根據雙曲線的性質求解即可.【詳解】當時,等式不是雙曲線的方程;當時,,可化為,可得虛半軸長,所以點F到雙曲線C的一條漸近線的距離為2.故選:D【點睛】本題考查雙曲線的方程與點到直線的距離.屬于基礎題.4、A【解析】

設,取與重合時的情況,計算出以及的值,利用排除法可得出正確選項.【詳解】如圖所示,利用排除法,取與重合時的情況.不妨設,延長到,使得.,,,,則,由余弦定理得,,,又,,當平面平面時,,,排除B、D選項;因為,,此時,,當平面平面時,,,排除C選項.故選:A.【點睛】本題考查平行線分線段成比例定理、余弦定理、勾股定理、三棱錐的體積計算公式、排除法,考查了空間想象能力、推理能力與計算能力,屬于難題.5、B【解析】

設左焦點的坐標,由AB的弦長可得a的值,進而可得雙曲線的方程,及左右焦點的坐標,進而求出三角形ABF2的面積,再由三角形被內切圓的圓心分割3個三角形的面積之和可得內切圓的半徑.【詳解】由雙曲線的方程可設左焦點,由題意可得,由,可得,所以雙曲線的方程為:所以,所以三角形ABF2的周長為設內切圓的半徑為r,所以三角形的面積,所以,解得,故選:B【點睛】本題考查求雙曲線的方程和雙曲線的性質及三角形的面積的求法,內切圓的半徑與三角形長周長的一半之積等于三角形的面積可得半徑的應用,屬于中檔題.6、A【解析】

由,兩邊平方后展開整理,即可求得,則的長可求.【詳解】解:,,,,,,.,,故選:.【點睛】本題考查了向量的多邊形法則、數量積的運算性質、向量垂直與數量積的關系,考查了空間想象能力,考查了推理能力與計算能力,屬于中檔題.7、A【解析】

根據三視圖,還原空間幾何體,即可得該幾何體的體積.【詳解】由該幾何體的三視圖,還原空間幾何體如下圖所示:可知該幾何體是底面在左側的四棱錐,其底面是邊長為4的正方形,高為4,故.故選:A【點睛】本題考查了三視圖的簡單應用,由三視圖還原空間幾何體,棱錐體積的求法,屬于基礎題.8、B【解析】

由題意知,,由,知,由此能求出.【詳解】由題意知,,,解得,,.故選:B.【點睛】本題考查離散型隨機變量的方差的求法,解題時要認真審題,仔細解答,注意二項分布的靈活運用.9、C【解析】

根據充分條件和必要條件的定義結合對數的運算進行判斷即可.【詳解】∵a,b∈(1,+∞),∴a>b?logab<1,logab<1?a>b,∴a>b是logab<1的充分必要條件,故選C.【點睛】本題主要考查充分條件和必要條件的判斷,根據不等式的解法是解決本題的關鍵.10、A【解析】

由圓心到漸近線的距離等于半徑列方程求解即可.【詳解】雙曲線的漸近線方程為y=±22x,圓心坐標為(3,0).由題意知,圓心到漸近線的距離等于圓的半徑r,即r=±答案:A【點睛】本題考查了雙曲線的漸近線方程及直線與圓的位置關系,屬于基礎題.11、D【解析】

由圖象求出以及函數的最小正周期的值,利用周期公式可求得的值,然后將點的坐標代入函數的解析式,結合的取值范圍求出的值,由此可得出函數的解析式.【詳解】由圖象可得,函數的最小正周期為,.將點代入函數的解析式得,得,,,則,,因此,.故選:D.【點睛】本題考查利用圖象求三角函數解析式,考查分析問題和解決問題的能力,屬于中等題.12、C【解析】

根據題意,分兩種情況進行討論:①語文和數學都安排在上午;②語文和數學一個安排在上午,一個安排在下午.分別求出每一種情況的安排方法數目,由分類加法計數原理可得答案.【詳解】根據題意,分兩種情況進行討論:①語文和數學都安排在上午,要求節語文課必須相鄰且節數學課也必須相鄰,將節語文課和節數學課分別捆綁,然后在剩余節課中選節到上午,由于節英語課不加以區分,此時,排法種數為種;②語文和數學都一個安排在上午,一個安排在下午.語文和數學一個安排在上午,一個安排在下午,但節語文課不加以區分,節數學課不加以區分,節英語課也不加以區分,此時,排法種數為種.綜上所述,共有種不同的排法.故選:C.【點睛】本題考查排列、組合的應用,涉及分類計數原理的應用,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用平面直角坐標系,設出點E,F的坐標,由可得,利用數量積運算求得,再利用線性規劃的知識求出的最大值.【詳解】建立平面直角坐標系,如圖(1)所示:設,,,即,又,令,其中,畫出圖形,如圖(2)所示:當直線經過點時,取得最大值.故答案為:【點睛】本題考查了向量數量積的坐標運算、簡單的線性規劃問題,解題的關鍵是建立恰當的坐標系,屬于基礎題.14、【解析】

先求得復數,再由復數模的計算公式即得.【詳解】,,則.故答案為:【點睛】本題考查復數的四則運算和求復數的模,是基礎題.15、【解析】

一個長、寬、高分別為1、2、2的長方體可以在一個圓柱形容器內任意轉動,則圓柱形容器的底面直徑及高的最小值均等于長方體的體對角線的長,長方體的體對角線的長為,所以容器體積的最小值為.16、1【解析】

先畫出約束條件的可行域,根據平移法判斷出最優點,代入目標函數的解析式,易可得到目標函數的最大值.【詳解】解:由約束條件得如圖所示的三角形區域,由于,則,要求的最大值,則求的截距的最小值,顯然當平行直線過點時,取得最大值為:.故答案為:1.【點睛】本題考查線性規劃求最值問題,我們常用幾何法求最值.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)由橢圓的離心率求出、的值,由此可求得橢圓的方程;(2)設點、,聯立直線與橢圓的方程,列出韋達定理,由題意得出,可得出,【詳解】(1)由題意得,,.又因為,,所以橢圓的方程為;(2)由,得.設、,所以,,依題意,,易知,四邊形為平行四邊形,所以.因為,,所以.即,將其整理為.因為,所以,.所以,即.【點睛】本題考查橢圓方程的求法和直線與橢圓位置關系的綜合運用,解題時要認真審題,注意挖掘題設中的隱含條件,合理地進行等價轉化,考查計算能力,屬于中等題.18、;【解析】

根據題意,求出直線方程并與拋物線方程聯立,利用韋達定理,結合,即可求出拋物線C的方程;設,的中點為,把直線l方程與拋物線方程聯立,利用判別式求出的取值范圍,利用韋達定理求出,進而求出的中垂線方程,即可求得在軸上的截距的表達式,然后根據的取值范圍求解即可.【詳解】由題意可知,直線l的方程為,與拋物線方程方程聯立可得,,設,由韋達定理可得,,因為,,所以,解得,所以拋物線C的方程為;設,的中點為,由,消去可得,所以判別式,解得或,由韋達定理可得,,所以的中垂線方程為,令則,因為或,所以即為所求.【點睛】本題考查拋物線的標準方程和直線與拋物線的位置關系,考查向量知識的運用;考查學生分析問題、解決問題的能力和運算求解能力;屬于中檔題.19、(1)(2)分布列見解析,期望為20【解析】

利用相互獨立事件概率公式求解即可;由題意知,隨機變量可能的取值為0,10,20,30,分別求出對應的概率,列出分布列并代入數學期望公式求解即可.【詳解】(1)由相互獨立事件概率公式可得,(2)由題意知,隨機變量可能的取值為0,10,20,30.,,,,所以,的概率分布列為0102030所以數學期望.【點睛】本題考查相互獨立事件概率公式和離散型隨機變量的分布列及其數學期望;考查運算求解能力;確定隨機變量可能的取值,求出對應的概率是求解本題的關鍵;屬于中檔題、常考題型.20、(1)證明見解析;(2)證明見解析.【解析】

(1)利用均值不等式即可求證;(2)利用,結合,即可證明.【詳解】(1)∵,同理有,,∴.(2)∵,∴.同理有,.∴.【點睛】本題考查利用均值不等式證明不等式,涉及的妙用,屬綜合性中檔題.21、(1)若,則在定義域內遞增;若,則在上單調遞增,在上單調遞減(2)證明見解析【解析】

(1),分,討論即可;(2)由題可得到,故只需證,,即,采用換元法,轉化為函數的最值問題來處理.【詳解】由已知,,若,則在定義域內遞增;若,則在上單調遞增,在上單調遞減.(2)由題意,對求導可得從而,是的兩個變號零點,因此下證:,即證令,即證:,對求導可得,,,因為故,所以在上單調遞減,而,從而所以在單調遞增,所以,即于是【點睛】本題考查利用導數研究函數的單調性以及證明不等式,考查學生邏輯推理能力

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論