




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆貴州省黔西南布依族苗族自治州興義市第八中學數學高三第一學期期末達標檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數列是公比為的正項等比數列,若、滿足,則的最小值為()A. B. C. D.2.空氣質量指數是反映空氣狀況的指數,指數值趨小,表明空氣質量越好,下圖是某市10月1日-20日指數變化趨勢,下列敘述錯誤的是()A.這20天中指數值的中位數略高于100B.這20天中的中度污染及以上(指數)的天數占C.該市10月的前半個月的空氣質量越來越好D.總體來說,該市10月上旬的空氣質量比中旬的空氣質量好3.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位:)為()A. B.6 C. D.4.在“一帶一路”知識測驗后,甲、乙、丙三人對成績進行預測.甲:我的成績比乙高.乙:丙的成績比我和甲的都高.丙:我的成績比乙高.成績公布后,三人成績互不相同且只有一個人預測正確,那么三人按成績由高到低的次序為A.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙5.已知集合,,,則集合()A. B. C. D.6.如圖,正三棱柱各條棱的長度均相等,為的中點,分別是線段和線段的動點(含端點),且滿足,當運動時,下列結論中不正確的是A.在內總存在與平面平行的線段B.平面平面C.三棱錐的體積為定值D.可能為直角三角形7.函數f(x)=2x-3A.[32C.[328.一個算法的程序框圖如圖所示,若該程序輸出的結果是,則判斷框中應填入的條件是()A. B. C. D.9.已知向量滿足,且與的夾角為,則()A. B. C. D.10.定義域為R的偶函數滿足任意,有,且當時,.若函數至少有三個零點,則的取值范圍是()A. B. C. D.11.雙曲線的一條漸近線方程為,那么它的離心率為()A. B. C. D.12.一個正方體被一個平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系xOy中,直角三角形ABC的三個頂點都在橢圓上,其中A(0,1)為直角頂點.若該三角形的面積的最大值為,則實數a的值為_____.14.在棱長為的正方體中,是正方形的中心,為的中點,過的平面與直線垂直,則平面截正方體所得的截面面積為______.15.設隨機變量服從正態分布,若,則的值是______.16.如圖,兩個同心圓的半徑分別為和,為大圓的一條直徑,過點作小圓的切線交大圓于另一點,切點為,點為劣弧上的任一點(不包括兩點),則的最大值是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數.(1)若,時,在上單調遞減,求的取值范圍;(2)若,,,求證:當時,.18.(12分)已知x,y,z均為正數.(1)若xy<1,證明:|x+z|?|y+z|>4xyz;(2)若=,求2xy?2yz?2xz的最小值.19.(12分)已知等差數列的前n項和為,等比數列的前n項和為,且,,.(1)求數列與的通項公式;(2)求數列的前n項和.20.(12分)在最新公布的湖南新高考方案中,“”模式要求學生在語數外3門全國統考科目之外,在歷史和物理2門科目中必選且只選1門,再從化學、生物、地理、政治4門科目中任選2門,后三科的高考成績按新的規則轉換后計入高考總分.相應地,高校在招生時可對特定專業設置具體的選修科目要求.雙超中學高一年級有學生1200人,現從中隨機抽取40人進行選科情況調查,用數字1~6分別依次代表歷史、物理、化學、生物、地理、政治6科,得到如下的統計表:序號選科情況序號選科情況序號選科情況序號選科情況11341123621156312352235122342223532236323513145232453323541451413524235341355156152362525635156624516236261563623672561715627134371568235182362823538134923519145292463923510236202353015640245(1)雙超中學規定:每個選修班最多編排50人且盡量滿額編班,每位老師執教2個選修班(當且僅當一門科目的選課班級總數為奇數時,允許這門科目的1位老師只教1個班).已知雙超中學高一年級現有化學、生物科目教師每科各8人,用樣本估計總體,則化學、生物兩科的教師人數是否需要調整?如果需要調整,各需增加或減少多少人?(2)請創建列聯表,運用獨立性檢驗的知識進行分析,探究是否有的把握判斷學生“選擇化學科目”與“選擇物理科目”有關.附:0.1000.0500.0100.0012.7063.8416.63510.828(3)某高校在其熱門人文專業的招生簡章中明確要求,僅允許選修了歷史科目,且在政治和地理2門中至少選修了1門的考生報名.現從雙超中學高一新生中隨機抽取3人,設具備高校專業報名資格的人數為,用樣本的頻率估計概率,求的分布列與期望.21.(12分)已知△ABC的兩個頂點A,B的坐標分別為(,0),(,0),圓E是△ABC的內切圓,在邊AC,BC,AB上的切點分別為P,Q,R,|CP|=2,動點C的軌跡為曲線G.(1)求曲線G的方程;(2)設直線l與曲線G交于M,N兩點,點D在曲線G上,是坐標原點,判斷四邊形OMDN的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.22.(10分)已知點、分別在軸、軸上運動,,.(1)求點的軌跡的方程;(2)過點且斜率存在的直線與曲線交于、兩點,,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
利用等比數列的通項公式和指數冪的運算法則、指數函數的單調性求得再根據此范圍求的最小值.【詳解】數列是公比為的正項等比數列,、滿足,由等比數列的通項公式得,即,,可得,且、都是正整數,求的最小值即求在,且、都是正整數范圍下求最小值和的最小值,討論、取值.當且時,的最小值為.故選:B.【點睛】本題考查等比數列的通項公式和指數冪的運算法則、指數函數性質等基礎知識,考查數學運算求解能力和分類討論思想,是中等題.2、C【解析】
結合題意,根據題目中的天的指數值,判斷選項中的命題是否正確.【詳解】對于,由圖可知天的指數值中有個低于,個高于,其中第個接近,第個高于,所以中位數略高于,故正確.對于,由圖可知天的指數值中高于的天數為,即占總天數的,故正確.對于,由圖可知該市月的前天的空氣質量越來越好,從第天到第天空氣質量越來越差,故錯誤.對于,由圖可知該市月上旬大部分指數在以下,中旬大部分指數在以上,所以該市月上旬的空氣質量比中旬的空氣質量好,故正確.故選:【點睛】本題考查了對折線圖數據的分析,讀懂題意是解題關鍵,并能運用所學知識對命題進行判斷,本題較為基礎.3、D【解析】
根據幾何體的三視圖,該幾何體是由正方體去掉三棱錐得到,根據正方體和三棱錐的體積公式可求解.【詳解】如圖,該幾何體為正方體去掉三棱錐,所以該幾何體的體積為:,故選:D【點睛】本題主要考查了空間幾何體的三視圖以及體積的求法,考查了空間想象力,屬于中檔題.4、A【解析】
利用逐一驗證的方法進行求解.【詳解】若甲預測正確,則乙、丙預測錯誤,則甲比乙成績高,丙比乙成績低,故3人成績由高到低依次為甲,乙,丙;若乙預測正確,則丙預測也正確,不符合題意;若丙預測正確,則甲必預測錯誤,丙比乙的成績高,乙比甲成績高,即丙比甲,乙成績都高,即乙預測正確,不符合題意,故選A.【點睛】本題將數學知識與時政結合,主要考查推理判斷能力.題目有一定難度,注重了基礎知識、邏輯推理能力的考查.5、D【解析】
根據集合的混合運算,即可容易求得結果.【詳解】,故可得.故選:D.【點睛】本題考查集合的混合運算,屬基礎題.6、D【解析】
A項用平行于平面ABC的平面與平面MDN相交,則交線與平面ABC平行;B項利用線面垂直的判定定理;C項三棱錐與三棱錐體積相等,三棱錐的底面積是定值,高也是定值,則體積是定值;D項用反證法說明三角形DMN不可能是直角三角形.【詳解】A項,用平行于平面ABC的平面截平面MND,則交線平行于平面ABC,故正確;B項,如圖:當M、N分別在BB1、CC1上運動時,若滿足BM=CN,則線段MN必過正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正確;C項,當M、N分別在BB1、CC1上運動時,△A1DM的面積不變,N到平面A1DM的距離不變,所以棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,故正確;D項,若△DMN為直角三角形,則必是以∠MDN為直角的直角三角形,但MN的最大值為BC1,而此時DM,DN的長大于BB1,所以△DMN不可能為直角三角形,故錯誤.故選D【點睛】本題考查了命題真假判斷、棱柱的結構特征、空間想象力和思維能力,意在考查對線面、面面平行、垂直的判定和性質的應用,是中檔題.7、A【解析】
根據冪函數的定義域與分母不為零列不等式組求解即可.【詳解】因為函數y=2x-3解得x≥32且∴函數f(x)=2x-3+1【點睛】定義域的三種類型及求法:(1)已知函數的解析式,則構造使解析式有意義的不等式(組)求解;(2)對實際問題:由實際意義及使解析式有意義構成的不等式(組)求解;(3)若已知函數fx的定義域為a,b,則函數fgx8、D【解析】
首先判斷循環結構類型,得到判斷框內的語句性質,然后對循環體進行分析,找出循環規律,判斷輸出結果與循環次數以及的關系,最終得出選項.【詳解】經判斷此循環為“直到型”結構,判斷框為跳出循環的語句,第一次循環:;第二次循環:;第三次循環:,此時退出循環,根據判斷框內為跳出循環的語句,,故選D.【點睛】題主要考查程序框圖的循環結構流程圖,屬于中檔題.解決程序框圖問題時一定注意以下幾點:(1)不要混淆處理框和輸入框;(2)注意區分程序框圖是條件分支結構還是循環結構;(3)注意區分當型循環結構和直到型循環結構;(4)處理循環結構的問題時一定要正確控制循環次數;(5)要注意各個框的順序,(6)在給出程序框圖求解輸出結果的試題中只要按照程序框圖規定的運算方法逐次計算,直到達到輸出條件即可.9、A【解析】
根據向量的運算法則展開后利用數量積的性質即可.【詳解】.故選:A.【點睛】本題主要考查數量積的運算,屬于基礎題.10、B【解析】
由題意可得的周期為,當時,,令,則的圖像和的圖像至少有個交點,畫出圖像,數形結合,根據,求得的取值范圍.【詳解】是定義域為R的偶函數,滿足任意,,令,又,為周期為的偶函數,當時,,當,當,作出圖像,如下圖所示:函數至少有三個零點,則的圖像和的圖像至少有個交點,,若,的圖像和的圖像只有1個交點,不合題意,所以,的圖像和的圖像至少有個交點,則有,即,.故選:B.【點睛】本題考查函數周期性及其應用,解題過程中用到了數形結合方法,這也是高考常考的熱點問題,屬于中檔題.11、D【解析】
根據雙曲線的一條漸近線方程為,列出方程,求出的值即可.【詳解】∵雙曲線的一條漸近線方程為,可得,∴,∴雙曲線的離心率.故選:D.【點睛】本小題主要考查雙曲線離心率的求法,屬于基礎題.12、D【解析】
試題分析:如圖所示,截去部分是正方體的一個角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D.考點:本題主要考查三視圖及幾何體體積的計算.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】
設直線AB的方程為y=kx+1,則直線AC的方程可設為yx+1,(k≠0),聯立方程得到B(,),故S,令t,得S,利用均值不等式得到答案.【詳解】設直線AB的方程為y=kx+1,則直線AC的方程可設為yx+1,(k≠0)由消去y,得(1+a2k2)x2+2a2kx=0,所以x=0或x∵A的坐標(0,1),∴B的坐標為(,k?1),即B(,),因此AB?,同理可得:AC?.∴Rt△ABC的面積為SAB?AC?令t,得S.∵t2,∴S△ABC.當且僅當,即t時,△ABC的面積S有最大值為.解之得a=3或a.∵a時,t2不符合題意,∴a=3.故答案為:3.【點睛】本題考查了橢圓內三角形面積的最值問題,意在考查學生的計算能力和轉化能力.14、【解析】
確定平面即為平面,四邊形是菱形,計算面積得到答案.【詳解】如圖,在正方體中,記的中點為,連接,則平面即為平面.證明如下:由正方體的性質可知,,則,四點共面,記的中點為,連接,易證.連接,則,所以平面,則.同理可證,,,則平面,所以平面即平面,且四邊形即平面截正方體所得的截面.因為正方體的棱長為,易知四邊形是菱形,其對角線,,所以其面積.故答案為:【點睛】本題考查了正方體的截面面積,意在考查學生的空間想象能力和計算能力.15、1【解析】
由題得,解不等式得解.【詳解】因為,所以,所以c=1.故答案為1【點睛】本題主要考查正態分布的圖像和性質,意在考查學生對該知識的理解掌握水平和分析推理能力.16、【解析】
以為坐標原點,所在的直線為軸,的垂直平分線為軸,建立平面直角坐標系,從而可得、,,,然后利用向量數量積的坐標運算可得,再根據輔助角公式以及三角函數的性質即可求解.【詳解】以為坐標原點,所在的直線為軸,的垂直平分線為軸,建立平面直角坐標系,則、,由,且,所以,所以,即又平分,所以,則,設,則,,所以,所以,,所以的最大值是.故答案為:【點睛】本題考查了向量數量積的坐標運算、利用向量解決幾何問題,同時考查了輔助角公式以及三角函數的性質,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】
(1)在上單調遞減等價于在恒成立,分離參數即可解決.(2)先對求導,化簡后根據零點存在性定理判斷唯一零點所在區間,構造函數利用基本不等式求解即可.【詳解】(1),時,,,∵在上單調遞減.∴,.令,,時,;時,,∴在上為減函數,在上為增函數.∴,∴.∴的取值范圍為.(2)若,,時,,,令,顯然在上為增函數.又,,∴有唯一零點.且,時,,;時,,,∴在上為增函數,在上為減函數.∴.又,∴,,.∴.,.∴當時,.【點睛】此題考查函數定區間上單調,和零點存在性定理等知識點,難點為找到最值后的構造函數求值域,屬于較難題目.18、(1)證明見解析;(2)最小值為1【解析】
(1)利用基本不等式可得,再根據0<xy<1時,即可證明|x+z|?|y+z|>4xyz.(2)由=,得,然后利用基本不等式即可得到xy+yz+xz≥3,從而求出2xy?2yz?2xz的最小值.【詳解】(1)證明:∵x,y,z均為正數,∴|x+z|?|y+z|=(x+z)(y+z)≥=,當且僅當x=y=z時取等號.又∵0<xy<1,∴,∴|x+z|?|y+z|>4xyz;(2)∵=,即.∵,,,當且僅當x=y=z=1時取等號,∴,∴xy+yz+xz≥3,∴2xy?2yz?2xz=2xy+yz+xz≥1,∴2xy?2yz?2xz的最小值為1.【點睛】本題考查了利用綜合法證明不等式和利用基本不等式求最值,考查了轉化思想和運算能力,屬中檔題.19、(1);(2)【解析】
(1)設數列的公差為d,由可得,,由即可解得,故,由,即可解得,進而求得.(2)由(1)得,,利用分組求和及錯位相減法即可求得結果.【詳解】(1)設數列的公差為d,數列的公比為q,由可得,,整理得,即,故,由可得,則,即,故.(2)由(1)得,,,故,所以,數列的前n項和為,設①,則②,②①得,綜上,數列的前n項和為.【點睛】本題考查求等差等比的通項公式,考試分組求和及錯位相減法求數列的和,考查學生的計算能力,難度一般.20、(1)不需調整(2)列聯表見解析;有的把握判斷學生“選擇化學科目”與“選擇物理科目”有關(3)詳見解析【解析】
(1)可估計高一年級選修相應科目的人數分別為120,2,推理得對應開設選修班的數目分別為15,1.推理知生物科目需要減少4名教師,化學科目不需要調整.(2)根據列聯表計算觀測值,根據臨界值表可得結論.(3)經統計,樣本中選修了歷史科目且在政治和地理2門中至少選修了一門的人數為12,頻率為.用頻率估計概率,則,根據二項分布概率公式可得分布列和數學期望.【詳解】(1)經統計可知,樣本40人中,選修化學、生物的人數分別為24,11,則可估計高一年級選修相應科目的人數分別為120,2.根據每個選修班最多編排50人,且盡量滿額編班,得對應開設選修班的數目分別為15,1.現有化學、生物科目教師每科各8人,根據每位教師執教2個選修班,當且僅當一門科目的選課班級總數為奇數時,允許這門科目的一位教師執教一個班的條件,知生物科目需要減少4名教師,化學科目不需要調整.(2)根據表格中的數據進行統計后,制作列聯表如下:選物理不選物理合計選化學19524不選化學61016合計251540則,有的把握判斷學生”選擇化學科目”與“選擇物理科目”有關.(3)經統計,樣本中選修了歷史科目且在政治和地理2門中至少選修了一門的人數為12,頻率為.用頻率估計概率,則,分布列如下:01230.3430.4410.1890.021數學期望為.【點睛】本題主要考查了離散型隨機變量的期望與方差,考查獨立性檢驗,意在考查學生對這些知識的理解掌握水平和分析推理能力.21、(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB31/T 959-2015閉式冷卻塔節能評價值
- DB31/T 898-2015有機熱載體鍋爐經濟運行管理要求
- DB31/T 728-2023食品冷庫經濟運行管理要求
- DB31/T 541-2011電梯能量回饋裝置技術要求和試驗方法
- DB31/T 531-2011動物戊型肝炎RT-nPCR和ELISA檢測方法
- DB31/T 1407-2023農業機構卓越績效評價準則
- DB31/T 1377.2-2022實驗雞和鴨第2部分:寄生蟲學監測
- DB31/T 1226-2020職業病診斷鑒定規范
- DB31/ 731-2013船舶修正總噸單位產品能源消耗限額
- DB31/ 329.21-2015重點單位重要部位安全技術防范系統要求第21部分:養老機構
- 呼吸功能的監測與護理
- 嬰兒椅設計研究報告總結
- 自動化機構設計基礎
- 厭學怎么辦-主題班會課件
- 公務用車租賃服務采購項目比選文件
- 香港認可的大陸工作證明范本
- 新建混凝土路面道路工程施工工程投標書(技術方案)
- 旁站記錄新表(腳手架拆除)
- 低壓柜開關更換施工方案
- 織金新型能源化工基地污水處理廠及配套管網工程-茶店污水處理廠環評報告
- 陜西省2023年中考英語真題(附答案)
評論
0/150
提交評論