




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省榆林市重點中學2024年中考數學全真模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.△ABC的三條邊長分別是5,13,12,則其外接圓半徑和內切圓半徑分別是()A.13,5 B.6.5,3 C.5,2 D.6.5,22.如圖,菱形ABCD中,∠B=60°,AB=4,以AD為直徑的⊙O交CD于點E,則的長為()A. B. C. D.3.為了解當地氣溫變化情況,某研究小組記錄了寒假期間連續6天的最高氣溫,結果如下(單位:﹣6,﹣1,x,2,﹣1,1.若這組數據的中位數是﹣1,則下列結論錯誤的是()A.方差是8 B.極差是9 C.眾數是﹣1 D.平均數是﹣14.下列圖形中,不是中心對稱圖形的是()A.平行四邊形 B.圓 C.等邊三角形 D.正六邊形5.實數a,b,c,d在數軸上的對應點的位置如圖所示,下列結論①a<b;②|b|=|d|;③a+c=a;④ad>0中,正確的有()A.4個 B.3個 C.2個 D.1個6.單項式2a3b的次數是()A.2 B.3 C.4 D.57.在以下四個圖案中,是軸對稱圖形的是()A. B. C. D.8.關于x的正比例函數,y=(m+1)若y隨x的增大而減小,則m的值為()A.2 B.-2 C.±2 D.-9.下列事件中為必然事件的是()A.打開電視機,正在播放茂名新聞 B.早晨的太陽從東方升起C.隨機擲一枚硬幣,落地后正面朝上 D.下雨后,天空出現彩虹10.如圖1是2019年4月份的日歷,現用一長方形在日歷表中任意框出4個數(如圖2),下列表示a,b,c,d之間關系的式子中不正確的是()A.a﹣d=b﹣c B.a+c+2=b+d C.a+b+14=c+d D.a+d=b+c二、填空題(本大題共6個小題,每小題3分,共18分)11.某校為了解學生最喜歡的球類運動情況,隨機選取該校部分學生進行調查,要求每名學生只寫一類最喜歡的球類運動,以下是根據調查結果繪制的統計圖表的一部分那么,其中最喜歡足球的學生數占被調查總人數的百分比為____________%12.如圖,一組平行橫格線,其相鄰橫格線間的距離都相等,已知點A、B、C、D、O都在橫格線上,且線段AD,BC交于點O,則AB:CD等于______.13.在平面直角坐標系xOy中,若干個半徑為1個單位長度,圓心角是的扇形按圖中的方式擺放,動點K從原點O出發,沿著“半徑OA弧AB弧BC半徑CD半徑DE”的曲線運動,若點K在線段上運動的速度為每秒1個單位長度,在弧線上運動的速度為每秒個單位長度,設第n秒運動到點K,為自然數,則的坐標是____,的坐標是____14.如圖,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4,點D是AC邊上一動點,連接BD,以AD為直徑的圓交BD于點E,則線段CE長度的最小值為___.15.甲、乙兩人分別從A,B兩地相向而行,他們距B地的距離s(km)與時間t(h)的關系如圖所示,那么乙的速度是__km/h.16.如圖,以點為圓心的兩個同心圓中,大圓的弦是小圓的切線,點是切點,則劣弧AB的長為.(結果保留)三、解答題(共8題,共72分)17.(8分)如圖所示,AB是⊙O的一條弦,DB切⊙O于點B,過點D作DC⊥OA于點C,DC與AB相交于點E.(1)求證:DB=DE;(2)若∠BDE=70°,求∠AOB的大小.18.(8分)霧霾天氣嚴重影響市民的生活質量。在今年寒假期間,某校九年級一班的綜合實踐小組學生對“霧霾天氣的主要成因”隨機調查了所在城市部分市民,并對調查結果進行了整理,繪制了下圖所示的不完整的統計圖表:組別霧霾天氣的主要成因百分比A工業污染45%B汽車尾氣排放C爐煙氣排放15%D其他(濫砍濫伐等)請根據統計圖表回答下列問題:本次被調查的市民共有多少人?并求和的值;請補全條形統計圖,并計算扇形統計圖中扇形區域所對應的圓心角的度數;若該市有100萬人口,請估計市民認為“工業污染和汽車尾氣排放是霧霾天氣主要成因”的人數.19.(8分)已知拋物線y=x2+bx+c經過點A(0,6),點B(1,3),直線l1:y=kx(k≠0),直線l2:y=-x-2,直線l1經過拋物線y=x2+bx+c的頂點P,且l1與l2相交于點C,直線l2與x軸、y軸分別交于點D、E.若把拋物線上下平移,使拋物線的頂點在直線l2上(此時拋物線的頂點記為M),再把拋物線左右平移,使拋物線的頂點在直線l1上(此時拋物線的頂點記為N).(1)求拋物y=x2+bx+c線的解析式.(2)判斷以點N為圓心,半徑長為4的圓與直線l2的位置關系,并說明理由.(3)設點F、H在直線l1上(點H在點F的下方),當△MHF與△OAB相似時,求點F、H的坐標(直接寫出結果).20.(8分)解不等式組:,并求出該不等式組所有整數解的和.21.(8分)(2016湖南省株洲市)某市對初二綜合素質測評中的審美與藝術進行考核,規定如下:考核綜合評價得分由測試成績(滿分100分)和平時成績(滿分100分)兩部分組成,其中測試成績占80%,平時成績占20%,并且當綜合評價得分大于或等于80分時,該生綜合評價為A等.(1)孔明同學的測試成績和平時成績兩項得分之和為185分,而綜合評價得分為91分,則孔明同學測試成績和平時成績各得多少分?(2)某同學測試成績為70分,他的綜合評價得分有可能達到A等嗎?為什么?(3)如果一個同學綜合評價要達到A等,他的測試成績至少要多少分?22.(10分)計算:(﹣1)2018+(﹣)﹣2﹣|2﹣|+4sin60°;23.(12分)已知點O是正方形ABCD對角線BD的中點.(1)如圖1,若點E是OD的中點,點F是AB上一點,且使得∠CEF=90°,過點E作ME∥AD,交AB于點M,交CD于點N.①∠AEM=∠FEM;②點F是AB的中點;(2)如圖2,若點E是OD上一點,點F是AB上一點,且使,請判斷△EFC的形狀,并說明理由;(3)如圖3,若E是OD上的動點(不與O,D重合),連接CE,過E點作EF⊥CE,交AB于點F,當時,請猜想的值(請直接寫出結論).24.先化簡再求值:÷(a﹣),其中a=2cos30°+1,b=tan45°.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據邊長確定三角形為直角三角形,斜邊即為外切圓直徑,內切圓半徑為,【詳解】解:如下圖,∵△ABC的三條邊長分別是5,13,12,且52+122=132,∴△ABC是直角三角形,其斜邊為外切圓直徑,∴外切圓半徑==6.5,內切圓半徑==2,故選D.【點睛】本題考查了直角三角形內切圓和外切圓的半徑,屬于簡單題,熟悉概念是解題關鍵.2、B【解析】
連接OE,由菱形的性質得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性質和三角形內角和定理求出∠DOE=60°,再由弧長公式即可得出答案.【詳解】解:連接OE,如圖所示:∵四邊形ABCD是菱形,∴∠D=∠B=60°,AD=AB=4,∴OA=OD=2,∵OD=OE,∴∠OED=∠D=60°,∴∠DOE=180°﹣2×60°=60°,∴的長==;故選B.【點睛】本題考查弧長公式、菱形的性質、等腰三角形的性質等知識;熟練掌握菱形的性質,求出∠DOE的度數是解決問題的關鍵.3、A【解析】根據題意可知x=-1,
平均數=(-6-1-1-1+2+1)÷6=-1,
∵數據-1出現兩次最多,
∴眾數為-1,
極差=1-(-6)=2,
方差=[(-6+1)2+(-1+1)2+(-1+1)2+(2+1)2+(-1+1)2+(1+1)2]=2.
故選A.4、C【解析】
根據中心對稱圖形的定義依次判斷各項即可解答.【詳解】選項A、平行四邊形是中心對稱圖形;選項B、圓是中心對稱圖形;選項C、等邊三角形不是中心對稱圖形;選項D、正六邊形是中心對稱圖形;故選C.【點睛】本題考查了中心對稱圖形的判定,熟知中心對稱圖形的定義是解決問題的關鍵.5、B【解析】
根據數軸上的點表示的數右邊的總比左邊的大,有理數的運算,絕對值的意義,可得答案.【詳解】解:由數軸,得a=-3.5,b=-2,c=0,d=2,①a<b,故①正確;②|b|=|d|,故②正確;③a+c=a,故③正確;④ad<0,故④錯誤;故選B.【點睛】本題考查了實數與數軸,利用數軸上的點表示的數右邊的總比左邊的大,有理數的運算,絕對值的意義是解題關鍵.6、C【解析】分析:根據單項式的性質即可求出答案.詳解:該單項式的次數為:3+1=4故選C.點睛:本題考查單項式的次數定義,解題的關鍵是熟練運用單項式的次數定義,本題屬于基礎題型.7、A【解析】
根據軸對稱圖形的概念對各選項分析判斷利用排除法求解.【詳解】A、是軸對稱圖形,故本選項正確;
B、不是軸對稱圖形,故本選項錯誤;
C、不是軸對稱圖形,故本選項錯誤;
D、不是軸對稱圖形,故本選項錯誤.
故選:A.【點睛】本題考查了軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.8、B【解析】
根據正比例函數定義可得m2-3=1,再根據正比例函數的性質可得m+1<0,再解即可.【詳解】由題意得:m2-3=1,且m+1<0,解得:m=-2,故選:B.【點睛】此題主要考查了正比例函數的性質和定義,關鍵是掌握正比例函數y=kx(k≠0)的自變量指數為1,當k<0時,y隨x的增大而減小.9、B【解析】分析:根據必然事件、不可能事件、隨機事件的概念可區別各類事件:A、打開電視機,正在播放茂名新聞,可能發生,也可能不發生,是隨機事件,故本選項錯誤;B、早晨的太陽從東方升起,是必然事件,故本選項正確;C、隨機擲一枚硬幣,落地后可能正面朝上,也可能背面朝上,故本選項錯誤;D、下雨后,天空出現彩虹,可能發生,也可能不發生,故本選項錯誤.故選B.10、A【解析】
觀察日歷中的數據,用含a的代數式表示出b,c,d的值,再將其逐一代入四個選項中,即可得出結論.【詳解】解:依題意,得:b=a+1,c=a+7,d=a+1.A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,選項A符合題意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,∴a+c+2=b+d,選項B不符合題意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,∴a+b+14=c+d,選項C不符合題意;D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,∴a+d=b+c,選項D不符合題意.故選:A.【點睛】考查了列代數式,利用含a的代數式表示出b,c,d是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1%【解析】
依據最喜歡羽毛球的學生數以及占被調查總人數的百分比,即可得到被調查總人數,進而得出最喜歡籃球的學生數以及最喜歡足球的學生數占被調查總人數的百分比.【詳解】∵被調查學生的總數為10÷20%=50人,
∴最喜歡籃球的有50×32%=16人,
則最喜歡足球的學生數占被調查總人數的百分比=×100%=1%,
故答案為:1.【點睛】本題主要考查扇形統計圖,扇形統計圖是用整個圓表示總數用圓內各個扇形的大小表示各部分數量占總數的百分數.通過扇形統計圖可以很清楚地表示出各部分數量同總數之間的關系.12、2:1.【解析】
過點O作OE⊥AB于點E,延長EO交CD于點F,可得OF⊥CD,由AB//CD,可得△AOB∽△DOC,根據相似三角形對應高的比等于相似比可得,由此即可求得答案.【詳解】如圖,過點O作OE⊥AB于點E,延長EO交CD于點F,∵AB//CD,∴∠OFD=∠OEA=90°,即OF⊥CD,∵AB//CD,∴△AOB∽△DOC,又∵OE⊥AB,OF⊥CD,練習本中的橫格線都平行,且相鄰兩條橫格線間的距離都相等,∴=,故答案為:2:1.【點睛】本題考查了相似三角形的的判定與性質,熟練掌握相似三角形對應高的比等于相似比是解本題的關鍵.13、【解析】
設第n秒運動到Kn(n為自然數)點,根據點K的運動規律找出部分Kn點的坐標,根據坐標的變化找出變化規律“K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0)”,依此規律即可得出結論.【詳解】設第n秒運動到Kn(n為自然數)點,觀察,發現規律:K1(),K2(1,0),K3(),K4(2,0),K5(),…,∴K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0).∵2018=4×504+2,∴K2018為(1009,0).故答案為:(),(1009,0).【點睛】本題考查了規律型中的點的坐標,解題的關鍵是找出變化規律,本題屬于中檔題,解決該題型題目時,根據運動的規律找出點的坐標,根據坐標的變化找出坐標變化的規律是關鍵.14、﹣2【解析】
連結AE,如圖1,先根據等腰直角三角形的性質得到AB=AC=4,再根據圓周角定理,由AD為直徑得到∠AED=90°,接著由∠AEB=90°得到點E在以AB為直徑的O上,于是當點O、E、C共線時,CE最小,如圖2,在Rt△AOC中利用勾股定理計算出OC=2,從而得到CE的最小值為2﹣2.【詳解】連結AE,如圖1,∵∠BAC=90°,AB=AC,BC=,∴AB=AC=4,∵AD為直徑,∴∠AED=90°,∴∠AEB=90°,∴點E在以AB為直徑的O上,∵O的半徑為2,∴當點O、E.C共線時,CE最小,如圖2在Rt△AOC中,∵OA=2,AC=4,∴OC=,∴CE=OC?OE=2﹣2,即線段CE長度的最小值為2﹣2.故答案為:2﹣2.【點睛】此題考查等腰直角三角形的性質,圓周角定理,勾股定理,解題關鍵在于結合實際運用圓的相關性質.15、3.6【解析】分析:根據題意,甲的速度為6km/h,乙出發后2.5小時兩人相遇,可以用方程思想解決問題.詳解:由題意,甲速度為6km/h.當甲開始運動時相距36km,兩小時后,乙開始運動,經過2.5小時兩人相遇.設乙的速度為xkm/h4.5×6+2.5x=36解得x=3.6故答案為3.6點睛:本題為一次函數實際應用問題,考查一次函數圖象在實際背景下所代表的意義.解答這類問題時,也可以通過構造方程解決問題.16、8π.【解析】試題分析:因為AB為切線,P為切點,劣弧AB所對圓心角考點:勾股定理;垂徑定理;弧長公式.三、解答題(共8題,共72分)17、(1)證明見解析;(2)110°.【解析】分析:(1)欲證明DB=DE,只要證明∠BED=∠ABD即可;(2)因為△OAB是等腰三角形,屬于只要求出∠OBA即可解決問題;詳解:(1)證明:∵DC⊥OA,∴∠OAB+∠CEA=90°,∵BD為切線,∴OB⊥BD,∴∠OBA+∠ABD=90°,∵OA=OB,∴∠OAB=∠OBA,∴∠CEA=∠ABD,∵∠CEA=∠BED,∴∠BED=∠ABD,∴DE=DB.(2)∵DE=DB,∠BDE=70°,∴∠BED=∠ABD=55°,∵BD為切線,∴OB⊥BD,∴∠OBA=35°,∵OA=OB,∴∠OBA=180°-2×35°=110°.點睛:本題考查圓周角定理、切線的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.18、(1)200人,;(2)見解析,;(3)75萬人.【解析】
(1)用A類的人數除以所占的百分比求出被調查的市民數,再用B類的人數除以總人數得出B類所占的百分比m,繼而求出n的值即可;(2)求出C、D兩組人數,從而可補全條形統計圖,用360度乘以n即可得扇形區域所對應的圓心角的度數;(3)用該市的總人數乘以持有A、B兩類所占的百分比的和即可.【詳解】(1)本次被調查的市民共有:(人),∴,;(2)組的人數是(人)、組的人數是(人),∴;補全的條形統計圖如下圖所示:扇形區域所對應的圓心角的度數為:;(3)(萬),∴若該市有100萬人口,市民認為“工業污染和汽車尾氣排放是霧霾天氣主要成因”的人數約為75萬人.【點睛】本題考查了條形統計圖、扇形統計圖、統計表,讀懂圖形,找出必要的信息是解題的關鍵.19、(1);(2)以點為圓心,半徑長為4的圓與直線相離;理由見解析;(3)點、的坐標分別為、或、或、.【解析】
(1)分別把A,B點坐標帶入函數解析式可求得b,c即可得到二次函數解析式(2)先求出頂點的坐標,得到直線解析式,再分別求得MN的坐標,再求出NC比較其與4的大小可得圓與直線的位置關系.(3)由題得出tanBAO=,分情況討論求得F,H坐標.【詳解】(1)把點、代入得,解得,,∴拋物線的解析式為.(2)由得,∴頂點的坐標為,把代入得解得,∴直線解析式為,設點,代入得,∴得,設點,代入得,∴得,由于直線與軸、軸分別交于點、∴易得、,∴,∴,∵點在直線上,∴,∴,即,∵,∴以點為圓心,半徑長為4的圓與直線相離.(3)點、的坐標分別為、或、或、.C(-1,-1),A(0,6),B(1,3)可得tanBAO=,情況1:tanCF1M==,CF1=9,MF1=6,H1F1=5,F1(8,8),H1(3,3);情況2:F2(-5,-5),H2(-10,-10)(與情況1關于L2對稱);情況3:F3(8,8),H3(-10,-10)(此時F3與F1重合,H3與H2重合).【點睛】本題考查的知識點是二次函數綜合題,解題的關鍵是熟練的掌握二次函數綜合題.20、1【解析】
分別求出每一個不等式的解集,根據口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集.【詳解】解:,解不等式①得:x≤3,解不等式②得:x>﹣2,所以不等式組的解集為:﹣2<x≤3,所以所有整數解的和為:﹣1+0+1+2+3=1.【點睛】本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.21、(1)孔明同學測試成績位90分,平時成績為95分;(2)不可能;(3)他的測試成績應該至少為1分.【解析】試題分析:(1)分別利用孔明同學的測試成績和平時成績兩項得分之和為185分,而綜合評價得分為91分,分別得出等式求出答案;(2)利用測試成績占80%,平時成績占20%,進而得出答案;(3)首先假設平時成績為滿分,進而得出不等式,求出測試成績的最小值.試題解析:(1)設孔明同學測試成績為x分,平時成績為y分,依題意得:,解之得:.答:孔明同學測試成績位90分,平時成績為95分;(2)由題意可得:80﹣70×80%=24,24÷20%=120>100,故不可能.(3)設平時成績為滿分,即100分,綜合成績為100×20%=20,設測試成績為a分,根據題意可得:20+80%a≥80,解得:a≥1.答:他的測試成績應該至少為1分.考點:一元一次不等式的應用;二元一次方程組的應用.22、1.【解析】分析:本題涉及乘方、負指數冪、二次根式化簡、絕對值和特殊角的三角函數5個考點.在計算時,需要針對每個考點分別進行計算,然后根據實數的運算法則求得計算結果.詳解:原式=1+4-(2-2)+4×,=1+4-2+2+2,=1.點睛:本題主要考查了實數的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關鍵是熟練掌握負整數指數冪、零指數冪、二次根式、絕對值等考點的運算.23、(1)①證明見解析;②證明見解析;(2)△EFC是等腰直角三角形.理由見解析;(3).【解析】試題分析:(1)①過點E作EG⊥BC,垂足為G,根據ASA證明△CEG≌△FEM得CE=FE,再根據SAS證明△ABE≌△CBE得AE=CE,在△AEF中根據等腰三角形“三線合一”即可證明結論成立;②設AM=x,則AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,從而AF=AB,得到點F是AB的中點.;(2)過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AME≌△FME(SAS),從而可得△EFC是等腰直角三角形.(3)方法同第(2)小題.過點E作EM⊥AB,垂足為M,延長ME交CD于點N,過點E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AEM≌△FEM(ASA),得AM=FM,設AM=x,則AF=2x,DN=x,DE=x,BD=x,AB=x,=2x:x=.試題解析:(1)①過點E作EG⊥BC,垂足為G,則四邊形MBGE為正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四邊形ABCD為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 客戶維護與管理制度
- 宵夜檔老板管理制度
- 家居定制店管理制度
- 庫房調發貨管理制度
- 影像科儀器管理制度
- 微信管理群管理制度
- 德州小餐桌管理制度
- 快印店質量管理制度
- 總公司衛生管理制度
- 總經理薪資管理制度
- 榆神礦區郭家灘煤礦(700 萬噸-年)項目環評
- 2024年高一生物學考模擬卷01
- 北京市豐臺區2023-2024學年五年級下學期期末英語試題
- 合同訂立規范情況
- 福建省廈門雙十思明分校2024屆八下物理期末達標檢測模擬試題及答案解析
- 2024年中國南水北調集團水網智慧科技限公司秋季公開招聘高頻考題難、易錯點模擬試題(共500題)附帶答案詳解
- 優化校本作業設計,提高校本作業實效
- JJG 705-2014液相色譜儀行業標準
- 第四屆全國電信和互聯網行業職業技能競賽考試題庫及答案
- (高清版)TDT 1056-2019 縣級國土資源調查生產成本定額
- 2024版國開電大法學本科《合同法》歷年期末考試總題庫
評論
0/150
提交評論