新疆塔城地區沙灣一中2025屆高二數學第一學期期末質量跟蹤監視試題含解析_第1頁
新疆塔城地區沙灣一中2025屆高二數學第一學期期末質量跟蹤監視試題含解析_第2頁
新疆塔城地區沙灣一中2025屆高二數學第一學期期末質量跟蹤監視試題含解析_第3頁
新疆塔城地區沙灣一中2025屆高二數學第一學期期末質量跟蹤監視試題含解析_第4頁
新疆塔城地區沙灣一中2025屆高二數學第一學期期末質量跟蹤監視試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

新疆塔城地區沙灣一中2025屆高二數學第一學期期末質量跟蹤監視試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某校初一有500名學生,為了培養學生良好的閱讀習慣,學校要求他們從四大名著中選一本閱讀,其中有200人選《三國演義》,125人選《水滸傳》,125人選《西游記》,50人選《紅樓夢》,若采用分層抽樣的方法隨機抽取40名學生分享他們的讀后感,則選《西游記》的學生抽取的人數為()A.5 B.10C.12 D.152.已知雙曲線的左右焦點分別是和,點關于漸近線的對稱點恰好落在圓上,則雙曲線的離心率為()A. B.2C. D.33.設變量,滿足約束條件,則目標函數的最大值為()A. B.0C.6 D.84.甲乙兩個雷達獨立工作,它們發現飛行目標的概率分別是0.9和0.8,飛行目標被雷達發現的概率為()A.0.72 B.0.26C.0.7 D.0.985.用3,4,5,6,7,9這6個數組成沒有重復數字的六位數,下列結論正確的有()A.在這樣的六位數中,奇數共有480個B.在這樣的六位數中,3、5、7、9相鄰的共有120個C.在這樣的六位數中,4,6不相鄰的共有504個D.在這樣六位數中,4個奇數從左到右按照從小到大排序的共有60個6.已知,則下列說法中一定正確的是()A. B.C. D.7.在中,,則邊的長等于()A. B.C. D.28.記為等差數列的前項和.若,,則的公差為()A.1 B.2C.4 D.89.已知向量,滿足條件,則的值為()A.1 B.C.2 D.10.已知,則a,b,c的大小關系為()A. B.C. D.11.已知動圓M與直線y=2相切,且與定圓C:外切,求動圓圓心M的軌跡方程A. B.C. D.12.由下面的條件一定能得出為銳角三角形的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數列的公差,等比數列的公比q為正整數,若,,且是正整數,則______14.某中學高一年級有420人,高二年級有460人,高三年級有500人,用分層抽樣的方法抽取部分樣本,若從高一年級抽取21人,則從高三年級抽取的人數是__________15.不等式的解集為,則________16.已知圓,過點作圓O的切線,則切線方程為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(1)討論函數的單調性;(2)證明:對任意正整數n,18.(12分)如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AD//BC,AB=BC=CD=1,AD=2,直線BC與平面PCD所成角的正弦值為.(1)求證:平面PCD⊥平面PAC;(2)求平面PAB與平面PCD所成銳二面角的余弦值.19.(12分)在①,②這兩個條件中任選一個,補充在下面的問題中,并作答.設數列的前項和為,且__________.(1)求數列的通項公式;(2)若,求數列的前項和.20.(12分)已知空間內不重合的四點A,B,C,D的坐標分別為,,,,且(1)求k,t的值;(2)求點B到直線CD的距離21.(12分)已知拋物線E:y2=8x(1)求拋物線的焦點及準線方程;(2)過點P(-1,1)的直線l1與拋物線E只有一個公共點,求直線l1的方程;(3)過點M(2,3)的直線l2與拋物線E交于點A,B.若弦AB的中點為M,求直線l2的方程22.(10分)已知函數(1)當時,討論的單調性;(2)當時,證明

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據分層抽樣的方法,列出方程,即可求解.【詳解】根據分層抽樣的方法,可得選《西游記》的學生抽取的人數為故選:B.2、B【解析】首先求出F1到漸近線的距離,利用F1關于漸近線的對稱點恰落在圓上,可得直角三角形,利用勾股定理得到關于ac的齊次式,即可求出雙曲線的離心率【詳解】由題意可設,則到漸近線的距離為.設關于漸近線的對稱點為M,F1M與漸近線交于A,∴MF1=2b,A為F1M的中點.又O是F1P的中點,∴OA∥F2M,∴為直角,所以△為直角三角形,由勾股定理得:,所以,所以,所以離心率故選:B.3、C【解析】畫出可行域,利用幾何意義求出目標函數最大值.【詳解】畫出圖形,如圖所示:陰影部分即為可行域,當目標函數經過點時,目標函數取得最大值.故選:C4、D【解析】利用對立事件的概率求法求飛行目標被雷達發現的概率.【詳解】由題設,飛行目標不被甲、乙發現的概率分別為、,所以飛行目標被雷達發現的概率為.故選:D5、A【解析】A選項,特殊位置優先考慮求出這樣的六位數中,奇數個數;B選項,相鄰問題捆綁法求解;C選項,不相鄰問題插空法求解;D選項,定序問題使用倍縮法求解.【詳解】用3,4,5,6,7,9這6個數組成沒有重復數字的六位數,個位為3,5,7,9中的一位,有種,其余五個數位上的數字進行全排列,有種,綜上:在這樣的六位數中,奇數共有個,A正確;在這樣的六位數中,3、5、7、9相鄰,將3、5、7、9捆綁,有種排法,再與4,6進行全排列,故共有個,B錯誤;在這樣的六位數中,4,6不相鄰,先將3、5、7、9進行全排列,再從五個位置中任選兩個將4,6排列,綜上共有個,C錯誤;在這樣的六位數中,4個奇數從左到右按照從小到大排序的共有個,D錯誤.故選:A6、B【解析】AD選項,舉出反例即可;BC選項,利用不等式的基本性質進行判斷.【詳解】當,時,滿足,此時,故A錯誤;因,所以,,,B正確;因為,所以,,故,C錯誤;當,時,滿足,,,所以,D錯誤.故選:B7、A【解析】由余弦定理求解【詳解】由余弦定理,得,即,解得(負值舍去)故選:A8、C【解析】根據等差數列的通項公式及前項和公式利用條件,列出關于與的方程組,通過解方程組求數列的公差.【詳解】設等差數列的公差為,則,,聯立,解得.故選:C.9、A【解析】先求出坐標,進而根據空間向量垂直的坐標運算求得答案.【詳解】因為,所以,解得.故選:A.10、A【解析】根據給定條件構造函數,再探討其單調性并借助單調性判斷作答.【詳解】令函數,求導得,當時,,于是得在上單調遞減,而,則,即,所以,故選:A11、D【解析】由題意動圓M與直線y=2相切,且與定圓C:外切∴動點M到C(0,-3)的距離與到直線y=3的距離相等由拋物線的定義知,點M的軌跡是以C(0,-3)為焦點,直線y=3為準線的拋物線故所求M的軌跡方程為考點:軌跡方程12、D【解析】對于A,兩邊平方得,由得,即為鈍角;對于B,由正弦定理求出,進而求出,可得結果;對于C,根據平方關系將余弦化為正弦,用正弦定理可將角轉化為邊,進而可得的值,從而作出判斷;對于D,由可得,推出,,,故可知三個內角均為銳角【詳解】解:對于A,由,兩邊平方整理得,,因為,所以,所以,所以,所以為鈍角三角形,故A不正確;對于B,由,得,所以,因為,所以,所以或,所以或,所以為直角三角形或鈍角三角形,故B不正確;對于C,因為,所以,即,由正弦定理得,由余弦定理得,因為,所以,故三角形為鈍角三角形,C不正確;對于D,由可得,因為中最多只有一個鈍角,所以,,中最多只有一個為負數,所以,,,所以中三個內角都為銳角,所以為銳角三角形,故D正確;故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由已知等差、等比數列以及,,是正整數,可得,結合q為正整數,進而求.【詳解】由,,令,其中m為正整數,有,又為正整數,所以當時,解得,當時,解得不是正整數,故答案為:14、25【解析】由條件先求出抽樣比,從而可求出從高三年級抽取的人數.【詳解】由題意抽樣比例:則從高三年級抽取的人數是人故答案為:2515、【解析】由一元二次方程與一元二次不等式之間的關系可知,方程的兩根是,所以因此.考點:一元二次方程與一元二次不等式之間的關系.16、或【解析】首先判斷點圓位置關系,再設切線方程并聯立圓的方程,根據所得方程求參數k,即可寫出切線方程.【詳解】由題設,,故在圓外,根據圓及,知:過作圓O的切線斜率一定存在,∴可設切線為,聯立圓的方程,整理得,∴,解得或.∴切線方程為或.故答案為:或.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析【解析】(1)由,令,得,或,又的定義域為,討論兩個根及的大小關系,即可判定函數的單調性;(2)當時,在,上遞減,則,即,由此能夠證明【小問1詳解】的定義域為,,令,得,或,①當,即時,若,則,遞增;若,則,遞減;②當,即時,若,則,遞減;若,則,遞增;若,則,遞減;綜上所述,當-2<a<0時,f(x)在,單調遞減,在單調遞增;當a≥0時,f(x)在單調遞增,在單調遞減.【小問2詳解】由(2)知當時,在,上遞減,,即,,,,2,3,,,,【點睛】本題考查利用導數研究函數的單調性,本題的關鍵是令a=1,用已知函數的單調性構造,再令x=恰當地利用對數求和進行解題18、(1)證明見解析(2)【解析】(1)取的中點,連接,證明,由線面垂直的判定定理可證明平面,再利用面面垂直的判定定理可證得結論,(2)過點作于,以為原點,建立空間直角坐標系,如圖所示,設,先根據直線BC與平面PCD所成角的正弦值為,求出,然后再求出平面PAB的法向量,利用向量的夾角公式可求得結果【小問1詳解】證明:取的中點,連接,因為AD//BC,AB=BC=CD=1,AD=2,所以,∥,所以四邊形為平行四邊形,所以,所以,因為平面,平面,所以,因為,所以平面,因為平面,所以平面平面,【小問2詳解】過點作于,以為原點,建立空間直角坐標系,如圖所示,在等腰梯形中,AD//BC,AB=BC=CD=1,AD=2,則,所以設因為平面,所以所以,設平面的法向量為,則,令,則,因為直線BC與平面PCD所成角的正弦值為,所以,解得,所以,,設平面的法向量為,因為,所以,令,則,所以,所以平面PAB與平面PCD所成銳二面角的余弦值為19、(1)答案不唯一,具體見解析(2)答案不唯一,具體見解析【解析】(1)若選①:根據,利用數列通項與前n項和的關系求解;若選②:構造利用等比數列的定義求解;(2)根據(1)得到,再利用錯位相減法求解.【小問1詳解】解:若選①:,當時,,當時,滿足上式,故若選②:易得于是數列是以為首項,2為公比的等比數列,【小問2詳解】若選①:由(1)得,從而,,作差得,于是若選②由(1)得,從而,,作差得,于是20、(1),(2)【解析】(1)由,可得存在唯一實數,使得,列出方程組,解之即可得解;(2)設直線與所成的角為,求出,再根據點B到直線CD的距離為即可得解【小問1詳解】解:,,因為,所以存在唯一實數,使得,所以,所以,解得,所以,;【小問2詳解】解:,則,設直線與所成的角為,則,所以點B到直線CD的距離為.21、(1)焦點為(2,0),準線方程為x=-2;(2)y=1或x-y+2=0或2x+y+1=0;(3)4x-3y+1=0.【解析】(1)根據拋物線的方程及其幾何性質,求焦點和準線;(2)分直線l1的斜率為0和不為0兩種情況,根據直線與拋物線只有一個公共點,由直線與x軸平行或Δ=0,得解;(3)利用點差法求出直線l2的斜率,即可得直線l2的方程【小問1詳解】由題意,p=4,則焦點為(2,0),準線方程為x=-2【小問2詳解】當直線l1的斜率為0時,y=1;當直線l1的斜率不為0時,設直線l1為x+1=m(y-1),聯立,得y2-8my+8m+8=0,因為直線l1與拋物線E只有一個公共點,所以Δ=64m2-4(8m+8)=0,解得m=1或,所以直線l1的方程為x-y+2=0或2x+y+1=0,綜上,直線l1為y=1或x-y+2=0或2x+y+1=0【小問3詳解】由題意,直線l2的斜率一定存在,設其斜率為k,A(x1,y1),B(x2,y2),則8x1,8x2,兩式作差得:8(x1-x2),即k,所以直線l2為y-3(x-2),即4x-3y+1=022、(1)單調遞減,在單調遞增;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論