




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省蒙城縣一中2025屆高二上數學期末調研模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設雙曲線的左、右頂點分別為、,左、右焦點分別為、,以為直徑的圓與雙曲線左支的一個交點為若以為直徑的圓與直線相切,則的面積為()A. B.C. D.2.若拋物線的準線方程是,則拋物線的標準方程是()A. B.C. D.3.已知,,則等于()A.2 B.C. D.4.有關橢圓敘述錯誤的是()A.長軸長等于4 B.短軸長等于4C.離心率為 D.的取值范圍是5.若雙曲線與橢圓有公共焦點,且離心率,則雙曲線的標準方程為()A. B.C. D.6.若不等式組表示的區域為,不等式表示的區域為,向區域均勻隨機撒顆芝麻,則落在區域中的芝麻數約為()A. B.C. D.7.若數列是等差數列,其前n項和為,若,且,則等于()A. B.C. D.8.下列問題中是古典概型的是A.種下一粒楊樹種子,求其能長成大樹的概率B.擲一顆質地不均勻的骰子,求出現1點的概率C.在區間[1,4]上任取一數,求這個數大于1.5概率D.同時擲兩枚質地均勻的骰子,求向上的點數之和是5的概率9.已知直線與直線垂直,則實數()A.10 B.C.5 D.10.已知命題p:“是方程表示橢圓”的充要條件;命題q:“是a,b,c成等比數列”的必要不充分條件,則下列命題為真命題的是()A. B.C. D.11.已知數列為等比數列,若,,則的值為()A.8 B.C.16 D.±1612.長方體中,,,,為側面內(含邊界)的動點,且滿足,則四棱錐體積的最小值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.從雙曲線上一點作軸的垂線,垂足為,則線段中點的軌跡方程為___________.14.已知過點作拋物線的兩條切線,切點分別為A,B,直線AB經過拋物線C的焦點F,則___________15.已知直線與雙曲線無公共點,則雙曲線離心率的取值范圍是____16.已知數列的通項公式,則數列的前5項為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)求的導數;(2)求函數的圖象在點處的切線方程.18.(12分)已知二次函數.(1)若時,不等式恒成立,求實數的取值范圍.(2)解關于的不等式(其中).19.(12分)已知直線經過點,,直線經過點,且.(1)分別求直線,的方程;(2)設直線與直線的交點為,求外接圓的方程.20.(12分)為迎接2022年北京冬奧會,推廣滑雪運動,某滑雪場開展滑雪促銷活動.該滑雪場的收費標準是:滑雪時間不超過1小時免費,超過1小時的部分每小時收費標準為40元(不足1小時的部分按1小時計算).有甲、乙兩人相互獨立地來該滑雪場運動,設甲、乙不超過1小時離開的概率分別為,;1小時以上且不超過2小時離開的概率分別為,;兩人滑雪時間都不會超過3小時.求甲、乙兩人所付滑雪費用相同的概率;21.(12分)如圖,在四棱錐中,平面,底面為矩形,,,為的中點,.請用空間向量知識解答下列問題:(1)求線段的長;(2)若為線段上一點,且,求平面與平面夾角的余弦值.22.(10分)已知橢圓:的一個焦點坐標為,離心率.(1)求橢圓的方程;(2)設為坐標原點,橢圓與直線相交于兩個不同的點A、B,線段AB的中點為M.若直線OM的斜率為-1,求線段AB的長;(3)如圖,設橢圓上一點R的橫坐標為1(R在第一象限),過R作兩條不重合直線分別與橢圓交于P、Q兩點、若直線PR與QR的傾斜角互補,求直線PQ的斜率的所有可能值組成的集合.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】據三角形中位線可得;再由雙曲線的定義求出,進而求出的面積【詳解】雙曲線的方程為:,,設以為直徑的圓與直線相切與點,則,且,,∥.又為的中點,,又,,的面積為:.故選:C2、D【解析】根據拋物線的準線方程,可直接得出拋物線的焦點,進而利用待定系數法求得拋物線的標準方程【詳解】準線方程為,則說明拋物線的焦點在軸的正半軸則其標準方程可設為:則準線方程為:解得:則拋物線的標準方程為:故選:D3、D【解析】利用兩角和的正切公式計算出正確答案.【詳解】.故選:D4、A【解析】根據題意求出,進而根據橢圓的性質求得答案.【詳解】橢圓方程化為:,則,則長軸長為8,短軸長為4,離心率,x的取值范圍是.即A錯誤,B,C,D正確.故選:A.5、A【解析】首先求出橢圓的焦點坐標,然后根據可得雙曲線方程中的的值,然后可得答案.【詳解】橢圓焦點坐標為所以雙曲線的焦點在軸上,,因為,所以,所以雙曲線的標準方程為故選:A6、A【解析】作出兩平面區域,計算兩區域的公共面積,利用幾何概型得出芝麻落在區域Γ內的概率,進而可得答案.【詳解】作出不等式組所表示的平面區域如下圖中三角形ABC及其內部,不等式表示的區域如下圖中的圓及其內部:由圖可得,A點坐標為點坐標為坐標為點坐標為.區域即的面積為,區域的面積為圓的面積,即,其中區域和區域不相交的部分面積即空白面積,所以區域和區域相交的部分面積,所以落入區域的概率為.所以均勻隨機撒顆芝麻,則落在區域中芝麻數約為.故選:A.7、B【解析】由等差數列的通項公式和前項和公式求出的首項和公差,即可求出.【詳解】設等差數列的公差為,則解得:,所以.故選:B.8、D【解析】A、B兩項中的基本事件的發生不是等可能的;C項中基本事件的個數是無限多個;D項中基本事件的發生是等可能的,且是有限個.故選D【考點】古典概型的判斷9、B【解析】根據兩直線垂直,列出方程,即可求解.【詳解】由題意,直線與直線垂直,可得,解得.故選:B.10、C【解析】先判斷命題p,q的真假,從而判斷的真假,再根據“或”“且”命題的真假判斷方法,可得答案.【詳解】當時,表示圓,故命題p:“是方程表示橢圓”的充要條件是假命題,命題q:“是a,b,c成等比數列”的必要不充分條件為真命題,則是真命題,是假命題,故是假命題,是假命題,是真命題,是假命題,故選:C11、A【解析】利用等比數列的通項公式即可求解.【詳解】因為為等比數列,設的公比為,則,,兩式相除可得,所以,所以,故選:A.12、D【解析】取的中點,以點為坐標原點,、、的方向分別為、、軸的正方向建立空間直角坐標系,分析可知點的軌跡是以點、為焦點的橢圓,求出橢圓的方程,可知當點為橢圓與棱或的交點時,點到平面的距離取最小值,由此可求得四棱錐體積的最小值.【詳解】取的中點,以點為坐標原點,、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標系,設點,其中,,則、,因為平面,平面,則,所以,,同理可得,所以,,所以點的軌跡是以點、為焦點,且長軸長為的橢圓的一部分,則,,,所以,點的軌跡方程為,點到平面的距離為,當點為曲線與棱或棱的交點時,點到平面的距離取最小值,將代入方程得,因此,四棱錐體積的最小值為.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】根據題意,設,進而根據中點坐標公式及點P已知雙曲線上求得答案.【詳解】由題意,設,則,則,即,因為,則,即的軌跡方程為.14、【解析】設出點的坐標,與拋物線方程聯立,結合題意和韋達定理,求得拋物線的方程為,直線AB的方程為,進而求得的值.【詳解】設,在拋物線,過切點A與拋物線相切的直線的斜率為,則以為切點的切線方程為,聯立方程組,整理得,則,整理得,所以,解得,所以以為切點的切線方程為,即,同理,設,在拋物線,過切點B與拋物線相切的直線,又因為在切線和,所以,所以直線AB的方程為,又直線AB過拋物線的焦點,所以令,可得,即,所以拋物線的方程為,直線AB的方程為,聯立方程組,整理得或,所以,所以.故答案為:.15、【解析】聯立直線得,由無公共點得,進而得,即可求出離心率的取值范圍.【詳解】聯立直線與雙曲線可得,整理得,顯然,由方程無解可得,即,則,,又離心率大于1,故離心率的取值范圍是.故答案為:.16、【解析】根據數列的通項公式可得答案.【詳解】因為,所以數列的前5項為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)利用基本初等函數的導數公式及求導法則直接計算作答.(2)求出,再利用導數的幾何意義求出切線方程作答.【小問1詳解】函數定義域為,所以函數.【小問2詳解】由(1)知,,而,于是得,即,所以函數的圖象在點處的切線方程是.18、(1);(2)答案見解析.【解析】(1)結合分離常數法、基本不等式求得的取值范圍.(2)將原不等式轉化為,對進行分類討論,由此求得不等式的解集.【詳解】(1)不等式即為:,當時,可變形為:,即.又,當且僅當,即時,等號成立,,即.實數的取值范圍是:.(2)不等式,即,等價于,即,①當時,不等式整理為,解得:;當時,方程的兩根為:,.②當時,可得,解不等式得:或;③當時,因為,解不等式得:;④當時,因為,不等式的解集為;⑤當時,因為,解不等式得:;綜上所述,不等式的解集為:①當時,不等式解集為;②當時,不等式解集為;③當時,不等式解集為;④當時,不等式解集為;⑤當時,不等式解集為.19、(1);(2).【解析】(1)根據兩點式即可求出直線l1的方程,根據直線垂直的關系即可求l2的方程;(2)先求出C點坐標,通過三角形的長度關系知道三角形是以AC為斜邊長的直角三角形,故AC的中點即為外心,AC即為直徑.解析:(1)∵直線經過點,,∴,設直線的方程為,∴,∴.(2),即:,∴,的中點為,∴的外接圓的圓心為,半徑為,∴外接圓的方程為:.點睛:這個題目考查的是已知兩直線位置關系求參的問題,還考查了三角形外接圓的問題.對于三角形為外接圓,圓心就是各個邊的中垂線的交點,鈍角三角形外心在三角形外側,銳角三角形圓心在三角形內部,直角三角形圓心在直角三角形斜邊的中點20、【解析】甲、乙兩人所付費用相同即為、、,求出相應的概率,利用互斥事件的概率公式,可求出甲、乙兩人所付費用相同的概率;【詳解】兩人所付費用相同,相同費用可能為0,40,80元,兩人都付0元的概率為,兩人都付40元的概率為,兩人都付80元的概率為,故兩人所付費用相同的概率為.21、(1)(2)【解析】(1)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,設,由已知可得出,求出的值,即可得解;(2)利用空間向量法可求得平面與平面夾角的余弦值.【小問1詳解】解:平面,,以點為坐標原點,、、所在直線分別為、、軸建立如圖所示的空間直角坐標系,設,則、、、,則,,,則,解得,故.【小問2詳解】解:,則,又、、,所以,,,設為平面的法向量,則,取,可得,顯然,為平面的一個法向量,,因此,平面與平面夾角的余弦值為.22、(1);(2);(3).【解析】(1)根據給定條件求出橢圓長半軸長a即可計算得解.(2)將代入橢圓的方程,再結合給定條件求出k值即可計算出AB的長.(3)設出直線PR的方程,再與橢圓的方程聯立求出點P坐標,同理可得點Q坐標,計算PQ的斜率即可作答.【小問1詳解】依題意,橢圓的半焦距c=1,而,解得,則,所以橢圓的方程是:.【小問2詳解】由消去y并整理得:,解得,,于是得線段A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中外教育史試題及答案
- 中醫消化內科試題及答案
- 浙江省安吉縣上墅私立高級中學2024-2025學年高二生物第二學期期末調研試題含解析
- 西寧市重點中學2025屆數學高二下期末考試試題含解析
- 礦業臨時彩鋼房設計與安全監管合同范本
- 綠色建筑財務代理與節能減排合同
- 精養肉牛代養服務合同
- 采棉機操作員安全責任合同書
- 車輛銷售與廣告宣傳合作合同
- 智能家居產品采購合同知識產權及用戶隱私保密協議
- 歌曲《花非花》教案設計
- 2024年江西省中考生物試卷(含答案)
- 辦公樓室內裝飾工程施工設計方案技術標范本
- 2024年無錫市濱湖區名小六年級畢業考試語文模擬試卷
- 校服供貨服務方案
- 中職語文基礎模塊下冊第六單元測試卷-【中職專用】(高教版2023基礎模塊下冊)解析版
- C6150車床主軸箱箱體加工工藝及夾具說明書
- 健康與免疫智慧樹知到期末考試答案2024年
- 新媒體視頻節目制作 課件 學習領域1 新聞短視頻制作
- 礦山應急救援鉆探技術規范
- 秦始皇帝陵的物探考古調查863計劃秦始皇陵物探考古進展情況的報告
評論
0/150
提交評論