2023-2024學年崇左市重點中學高三3月新起點考試數學試題_第1頁
2023-2024學年崇左市重點中學高三3月新起點考試數學試題_第2頁
2023-2024學年崇左市重點中學高三3月新起點考試數學試題_第3頁
2023-2024學年崇左市重點中學高三3月新起點考試數學試題_第4頁
2023-2024學年崇左市重點中學高三3月新起點考試數學試題_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年崇左市重點中學高三3月新起點考試數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.很多關于整數規律的猜想都通俗易懂,吸引了大量的數學家和數學愛好者,有些猜想已經被數學家證明,如“費馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內容是:對于每一個正整數,如果它是奇數,則將它乘以再加1;如果它是偶數,則將它除以;如此循環,最終都能夠得到.下圖為研究“角谷猜想”的一個程序框圖.若輸入的值為,則輸出i的值為()A. B. C. D.2.正方形的邊長為,是正方形內部(不包括正方形的邊)一點,且,則的最小值為()A. B. C. D.3.若復數滿足,則()A. B. C.2 D.4.如圖1,《九章算術》中記載了一個“折竹抵地”問題:今有竹高一丈,末折抵地,去本三尺,問折者高幾何?意思是:有一根竹子,原高一丈(1丈=10尺),現被風折斷,尖端落在地上,竹尖與竹根的距離三尺,問折斷處離地面的高為()尺.A. B. C. D.5.某四棱錐的三視圖如圖所示,則該四棱錐的體積為()A. B. C. D.6.為研究某咖啡店每日的熱咖啡銷售量和氣溫之間是否具有線性相關關系,統計該店2017年每周六的銷售量及當天氣溫得到如圖所示的散點圖(軸表示氣溫,軸表示銷售量),由散點圖可知與的相關關系為()A.正相關,相關系數的值為B.負相關,相關系數的值為C.負相關,相關系數的值為D.正相關,相關負數的值為7.是邊長為的等邊三角形,、分別為、的中點,沿把折起,使點翻折到點的位置,連接、,當四棱錐的外接球的表面積最小時,四棱錐的體積為()A. B. C. D.8.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術數之源,其中河圖的排列結構是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如圖,白圈為陽數,黑點為陰數,若從陰數和陽數中各取一數,則其差的絕對值為5的概率為A. B. C. D.9.如圖所示,三國時代數學家趙爽在《周髀算經》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一內角為,若向弦圖內隨機拋擲500顆米粒(米粒大小忽略不計,?。?,則落在小正方形(陰影)內的米粒數大約為()A.134 B.67 C.182 D.10810.已知雙曲線(,),以點()為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點,若,則的離心率為()A. B. C. D.11.已知雙曲線,為坐標原點,、為其左、右焦點,點在的漸近線上,,且,則該雙曲線的漸近線方程為()A. B. C. D.12.函數在區間上的大致圖象如圖所示,則可能是()A.B.C.D.二、填空題:本題共4小題,每小題5分,共20分。13.已知兩個單位向量滿足,則向量與的夾角為_____________.14.運行下面的算法偽代碼,輸出的結果為_____.15.已知過點的直線與函數的圖象交于、兩點,點在線段上,過作軸的平行線交函數的圖象于點,當∥軸,點的橫坐標是16.已知是定義在上的奇函數,當時,,則不等式的解集用區間表示為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直角中,,,,點在線段上.(1)若,求的長;(2)點是線段上一點,,且,求的值.18.(12分)已知等差數列的前n項和為,等比數列的前n項和為,且,,.(1)求數列與的通項公式;(2)求數列的前n項和.19.(12分)已知,均為正數,且.證明:(1);(2).20.(12分)設函數.(1)當時,求不等式的解集;(2)當時,求實數的取值范圍.21.(12分)在平面直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)若直線與曲線交于、兩點,求的面積.22.(10分)在平面直角坐標系中,曲線(為參數),以坐標原點為極點,軸的正半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的普通方程;(2)若P,Q分別為曲線,上的動點,求的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

根據程序框圖列舉出程序的每一步,即可得出輸出結果.【詳解】輸入,不成立,是偶數成立,則,;不成立,是偶數不成立,則,;不成立,是偶數成立,則,;不成立,是偶數成立,則,;不成立,是偶數成立,則,;不成立,是偶數成立,則,;成立,跳出循環,輸出i的值為.故選:B.【點睛】本題考查利用程序框圖計算輸出結果,考查計算能力,屬于基礎題.2.C【解析】

分別以直線為軸,直線為軸建立平面直角坐標系,設,根據,可求,而,化簡求解.【詳解】解:建立以為原點,以直線為軸,直線為軸的平面直角坐標系.設,,,則,,由,即,得.所以=,所以當時,的最小值為.故選:C.【點睛】本題考查向量的數量積的坐標表示,屬于基礎題.3.D【解析】

把已知等式變形,利用復數代數形式的乘除運算化簡,再由復數模的計算公式計算.【詳解】解:由題意知,,,∴,故選:D.【點睛】本題考查復數代數形式的乘除運算,考查復數模的求法.4.B【解析】如圖,已知,,

∴,解得

,∴,解得

.∴折斷后的竹干高為4.55尺故選B.5.B【解析】

由三視圖知該四棱錐是底面為正方形,且一側棱垂直于底面,由此求出四棱錐的體積.【詳解】由三視圖知該四棱錐是底面為正方形,且一側棱垂直于底面,畫出四棱錐的直觀圖,如圖所示:則該四棱錐的體積為.故選:B.【點睛】本題考查了利用三視圖求幾何體體積的問題,是基礎題.6.C【解析】

根據正負相關的概念判斷.【詳解】由散點圖知隨著的增大而減小,因此是負相關.相關系數為負.故選:C.【點睛】本題考查變量的相關關系,考查正相關和負相關的區別.掌握正負相關的定義是解題基礎.7.D【解析】

首先由題意得,當梯形的外接圓圓心為四棱錐的外接球球心時,外接球的半徑最小,通過圖形發現,的中點即為梯形的外接圓圓心,也即四棱錐的外接球球心,則可得到,進而可根據四棱錐的體積公式求出體積.【詳解】如圖,四邊形為等腰梯形,則其必有外接圓,設為梯形的外接圓圓心,當也為四棱錐的外接球球心時,外接球的半徑最小,也就使得外接球的表面積最小,過作的垂線交于點,交于點,連接,點必在上,、分別為、的中點,則必有,,即為直角三角形.對于等腰梯形,如圖:因為是等邊三角形,、、分別為、、的中點,必有,所以點為等腰梯形的外接圓圓心,即點與點重合,如圖,,所以四棱錐底面的高為,.故選:D.【點睛】本題考查四棱錐的外接球及體積問題,關鍵是要找到外接球球心的位置,這個是一個難點,考查了學生空間想象能力和分析能力,是一道難度較大的題目.8.A【解析】

陽數:,陰數:,然后分析陰數和陽數差的絕對值為5的情況數,最后計算相應概率.【詳解】因為陽數:,陰數:,所以從陰數和陽數中各取一數差的絕對值有:個,滿足差的絕對值為5的有:共個,則.故選:A.【點睛】本題考查實際背景下古典概型的計算,難度一般.古典概型的概率計算公式:.9.B【解析】

根據幾何概型的概率公式求出對應面積之比即可得到結論.【詳解】解:設大正方形的邊長為1,則小直角三角形的邊長為,

則小正方形的邊長為,小正方形的面積,

則落在小正方形(陰影)內的米粒數大約為,

故選:B.【點睛】本題主要考查幾何概型的概率的應用,求出對應的面積之比是解決本題的關鍵.10.A【解析】

求出雙曲線的一條漸近線方程,利用圓與雙曲線的一條漸近線交于兩點,且,則可根據圓心到漸近線距離為列出方程,求解離心率.【詳解】不妨設雙曲線的一條漸近線與圓交于,因為,所以圓心到的距離為:,即,因為,所以解得.故選A.【點睛】本題考查雙曲線的簡單性質的應用,考查了轉化思想以及計算能力,屬于中檔題.對于離心率求解問題,關鍵是建立關于的齊次方程,主要有兩個思考方向,一方面,可以從幾何的角度,結合曲線的幾何性質以及題目中的幾何關系建立方程;另一方面,可以從代數的角度,結合曲線方程的性質以及題目中的代數的關系建立方程.11.D【解析】

根據,先確定出的長度,然后利用雙曲線定義將轉化為的關系式,化簡后可得到的值,即可求漸近線方程.【詳解】如圖所示:因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以漸近線方程為.故選:D.【點睛】本題考查根據雙曲線中的長度關系求解漸近線方程,難度一般.注意雙曲線的焦點到漸近線的距離等于虛軸長度的一半.12.B【解析】

根據特殊值及函數的單調性判斷即可;【詳解】解:當時,,無意義,故排除A;又,則,故排除D;對于C,當時,,所以不單調,故排除C;故選:B【點睛】本題考查根據函數圖象選擇函數解析式,這類問題利用特殊值與排除法是最佳選擇,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由得,即得解.【詳解】由題意可知,則.解得,所以,向量與的夾角為.故答案為:【點睛】本題主要考查平面向量的數量積的計算和夾角的計算,意在考查學生對這些知識的理解掌握水平.14.【解析】

模擬程序的運行過程知該程序運行后計算并輸出的值,用裂項相消法求和即可.【詳解】模擬程序的運行過程知,該程序運行后執行:.故答案為:【點睛】本題考查算法語句中的循環語句和裂項相消法求和;掌握循環體執行的次數是求解本題的關鍵;屬于基礎題.15.【解析】

通過設出A點坐標,可得C點坐標,通過∥軸,可得B點坐標,于是再利用可得答案.【詳解】根據題意,可設點,則,由于∥軸,故,代入,可得,即,由于在線段上,故,即,解得.16.【解析】設,則,由題意可得故當時,由不等式,可得,或求得,或故答案為(三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)3;(2).【解析】

(1)在中,利用正弦定理即可得到答案;(2)由可得,在中,利用及余弦定理得,解方程組即可.【詳解】(1)在中,已知,,,由正弦定理,得,解得.(2)因為,所以,解得.在中,由余弦定理得,,即,,故.【點睛】本題考查正余弦定理在解三角形中的應用,考查學生的計算能力,是一道中檔題.18.(1);(2)【解析】

(1)設數列的公差為d,由可得,,由即可解得,故,由,即可解得,進而求得.(2)由(1)得,,利用分組求和及錯位相減法即可求得結果.【詳解】(1)設數列的公差為d,數列的公比為q,由可得,,整理得,即,故,由可得,則,即,故.(2)由(1)得,,,故,所以,數列的前n項和為,設①,則②,②①得,綜上,數列的前n項和為.【點睛】本題考查求等差等比的通項公式,考試分組求和及錯位相減法求數列的和,考查學生的計算能力,難度一般.19.(1)見解析(2)見解析【解析】

(1)由進行變換,得到,兩邊開方并化簡,證得不等式成立.(2)將化為,然后利用基本不等式,證得不等式成立.【詳解】(1),兩邊加上得,即,當且僅當時取等號,∴.(2).當且僅當時取等號.【點睛】本小題主要考查利用基本不等式證明不等式成立,考查化歸與轉化的數學思想方法,屬于中檔題.20.(1)(2)當時,的取值范圍為;當時,的取值范圍為.【解析】

(1)當時,分類討論把不等式化為等價不等式組,即可求解.(2)由絕對值的三角不等式,可得,當且僅當時,取“”,分類討論,即可求解.【詳解】(1)當時,,不等式可化為或或,解得不等式的解集為.(2)由絕對值的三角不等式,可得,當且僅當時,取“”,所以當時,的取值范圍為;當時,的取值范圍為.【點睛】本題主要考查了含絕對值的不等式的求解,以及絕對值三角不等式的應用,其中解答中熟記含絕對值不等式的解法,以及合理應用絕對值的三角不等式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.21.(1),;(2).【解析】

(1)在直線的參數方程中消去參數可得出直線的普通方程,在曲線的極坐標方程兩邊同時乘以,結合可將曲線的極坐標方程化為直角坐標方程;(2)計算出直線截圓所得弦長,并計算出原點到直線的距離,利用三角形的面積公式可求得的面積.【詳解】(1)由得,故直線的普通方程是.由,得,代入公式得,得,故曲線的直角坐標方程是;(2)因為曲線的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論