




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省渭南市2025屆高二數學第一學期期末統考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線的漸近線的斜率是()A.1 B.C. D.2.已知等比數列,且,則()A.16 B.32C.24 D.643.拋物線有如下光學性質:平行于拋物線對稱軸的入射光線經拋物線反射后必過拋物線的焦點.已知拋物線的焦點為F,一條平行于y軸的光線從點射出,經過拋物線上的點A反射后,再經拋物線上的另一點B射出,則經點B反射后的反射光線必過點()A. B.C. D.4.已知圓與圓外切,則()A. B.C. D.5.已知等差數列的前項和為,,,則()A. B.C. D.6.已知過點的直線與圓相切,且與直線平行,則()A.2 B.1C. D.7.點到直線的距離為2,則的值為()A.0 B.C.0或 D.0或8.等差數列前項和,已知,,則的值是().A. B.C. D.9.命題:“,”的否定形式為()A., B.,C., D.,10.已知函數的導函數滿足,則()A. B.C.3 D.411.已知為虛數單位,復數滿足為純虛數,則的虛部為()A. B.C. D.12.已知為橢圓的兩個焦點,過的直線交橢圓于兩點,若,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數列的前n項和為,則______14.設等差數列,前項和分別為,,若對任意自然數都有,則的值為______.15.的展開式中的系數為_________16.已知雙曲線C:的兩焦點分別為,,P為雙曲線C上一點,若,則=___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)有兩位射擊運動員在一次射擊測試中各射靶7次,每次命中的環數如下:甲6978856乙a398964經計算可得甲、乙兩名射擊運動員的平均成績是一樣的(1)求實數a的值;(2)請通過計算,判斷甲、乙兩名射擊運動員哪一位的成績更穩定?18.(12分)如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,AB∥CD,AB=2,CD=3,M為PC上一點,且PM=2MC.(1)求證:BM∥平面PAD;(2)若AD=2,PD=3,∠BAD=60°,求三棱錐P-ADM的體積19.(12分)如圖,正方體的棱長為4,E,F分別是上的點,且.(1)求與平面所成角的正切值;(2)求證:.20.(12分)某車間為了規定工時定額,需要確定加工零件所花費的時間,為此做了四次試驗,得到的數據如表:零件的個數x(個)2345加工的時間y(小時)2.5344.5(1)在給定的坐標系中畫出表中數據的散點圖.(2)求出y關于x的線性回歸方程,試預測加工10個零件需要多少小時?(注:,)21.(12分)如圖所示,橢圓的左、右焦點分別為、,左、右頂點分別為、,為橢圓上一點,連接并延長交橢圓于點,已知橢圓的離心率為,△的周長為8(1)求橢圓的方程;(2)設點的坐標為①當,,成等差數列時,求點的坐標;②若直線、分別與直線交于點、,以為直徑的圓是否經過某定點?若經過定點,求出定點坐標;若不經過定點,請說明理由22.(10分)奮發學習小組共有3名學生,在某次探究活動中,他們每人上交了1份作業,現各自從這3份作業中隨機地取出了一份作業.(1)每個學生恰好取到自己作業的概率是多少?(2)每個學生不都取到自己作業的概率是多少?(3)每個學生取到的都不是自己作業的概率是多少?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由雙曲線的漸近線方程為:,化簡即可得到答案.【詳解】雙曲線的漸近線方程為:,即,漸近線的斜率是.故選:B2、A【解析】由等比數列的定義先求出公比,然后可解..【詳解】,得故選:A3、D【解析】求出、坐標可得直線的方程,與拋物線方程聯立求出,根據選項可得答案,【詳解】把代入得,所以,所以直線的方程為即,與拋物線方程聯立解得,所以,因為反射光線平行于y軸,根據選項可得D正確,故選:D4、D【解析】根據兩圓外切關系,圓心距離等于半徑的和列方程求參數.【詳解】由題設,兩圓圓心分別為、,半徑分別為1、r,∴由外切關系知:,可得.故選:D.5、C【解析】利用已知條件求得,由此求得.【詳解】依題意,解得,所以.故選:C【點睛】本小題主要考查等差數列的通項公式和前項和公式,屬于基礎題.6、C【解析】先根據垂直關系設切線方程,再根據圓心到切線距離等于半徑列式解得結果.【詳解】因為切線與直線平行,所以切線方程可設為因為切線過點P(2,2),所以因為與圓相切,所以故選:C7、C【解析】根據點到直線的距離公式即可得出答案.【詳解】解:點到直線的距離為,解得或.故選:C.8、C【解析】由題意,設等差數列的公差為,則,故,故,故選9、D【解析】根據含一個量詞的命題的否定方法直接得到結果.【詳解】因為全稱命題的否定是特稱命題,所以命題:“,”的否定形式為:,,故選:D.【點睛】本題考查全稱命題的否定,難度容易.含一個量詞的命題的否定方法:修改量詞,否定結論.10、C【解析】先對函數求導,再由,可求出的關系式,然后求【詳解】由,得,因為,所以,所以,故選:C11、D【解析】先設,代入化簡,由純虛數定義求出,即可求解.【詳解】設,所以,因為為純虛數,所以,解得,所以的虛部為:.故選:D.12、C【解析】根據橢圓的定義可得,由即可求解.【詳解】由,可得根據橢圓的定義,所以.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先通過裂項相消求出,再代入計算即可.【詳解】,則,故.故答案為:3.14、【解析】由等差數列的性質可得:.再利用已知即可得出【詳解】由等差數列的性質可得:對于任意的都有,則故答案為:【點睛】本題考查了等差數列的性質,求和公式,考查了推理能力與計算能力,屬于中檔題15、4【解析】將代數式變形為,寫出展開式的通項,令的指數為,求得參數的值,代入通項即可求解.【詳解】由展開式的通項為,令,得展開式中的系數為.由展開式的通項為,令,得展開式中的系數為.所以的展開式中的系數為.故答案為:.16、18或2##2或18【解析】先由雙曲線的方程求出,再利用雙曲線的定義列方程求解即可【詳解】由,得,則,因為雙曲線C:的兩焦點分別為,,P為雙曲線C上一點,所以,即,所以或,因為,所以或都符合題意,故答案為:18或2三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)10;(2)甲的成績比乙更穩定.【解析】(1)根據甲乙成績求他們的平均成績,由平均成績相等列方程求參數a的值.(2)由已知數據及(1)的結果,求甲乙的方差并比較大小,即可知哪位運動員成績更穩定.【小問1詳解】由題意,甲的平均成績為,乙的平均成績為,又甲、乙兩名射擊運動員的平均成績是一樣的,有,解得,故實數a為10;【小問2詳解】甲的方差,乙的方差,由,知:甲的成績比乙更穩定.18、(1)證明見解析;(2).【解析】(1)過M作MN∥CD交PD于點N,證明四邊形ABMN為平行四邊形,即可證明BM∥平面PAD.(2)過B作AD的垂線,垂足為E,證明BE⊥平面PAD,在利用VP-ADM=VM-PAD求三棱錐P-ADM的體積.【詳解】解:(1)證明:如圖,過M作MN∥CD交PD于點N,連接AN.∵PM=2MC,∴MN=CD.又AB=CD,且AB∥CD∴AB∥MN∴四邊形ABMN為平行四邊形∴BM∥AN.又BM?平面PAD,AN?平面PAD∴BM∥平面PAD.(2)如圖,過B作AD的垂線,垂足為E.∵PD⊥平面ABCD,BE?平面ABCD∴PD⊥BE.又AD?平面PAD,PD?平面PAD,AD∩PD=D∴BE⊥平面PAD.由(1)知,BM∥平面PAD∴點M到平面PAD的距離等于點B到平面PAD的距離,即BE.連接BD,在△ABD中,AB=AD=2,∠BAD=60°,∴BE=則三棱錐P-ADM的體積VP-ADM=VM-PAD=×S△PAD×BE=×3×=.19、(1);(2)證明見解析.【解析】(1)在正方體中,平面,連接,則為與平面所成的角,在直角三角形,求出即可;(2)∵是正方體,又是空間垂直問題,∴易采用向量法,∴建立如圖所示的空間直角坐標系,欲證,只須證,再用向量數量積公式求解即可.【小問1詳解】在正方體中,平面,連接,則為與平面所成的角,又,,,∴;【小問2詳解】如圖,以為坐標原點,直線、、分別軸、軸、軸,建立空間直角坐標系.則∴,,∴,∴.20、(1)見解析;(2),預測加工10個零件大約需要8.05小時【解析】(1)由題意描點作出散點圖;(2)根據題中的公式分別求和,即得,令代入求出的值即可.【詳解】(1)散點圖(2),,,∴,,∴回歸直線方程:,令,得,∴預測加工10個零件大約需要8.05小時.【點睛】本題主要考查了散點圖,利用最小二乘法求線性回歸方程,考查了學生基本作圖能力和運算求解能力.21、(1);(2)①或;②過定點、,理由見解析.【解析】(1)由焦點三角形的周長、離心率求橢圓參數,即可得橢圓方程.(2)①由(1)可得,結合橢圓的定義求,即可確定的坐標;②由題設,求直線、的方程,進而求、坐標,即可得為直徑的圓的方程,令求橫坐標,即可得定點.【小問1詳解】由題設,易知:,可得,則,∴橢圓.【小問2詳解】①由(1)知:,令,則,∴,解得,故,此時或②由(1),,,∴可令直線:,直線:,∴將代入直線可得:,,則圓心且半徑為,∴為直徑的圓為,當時,,又,∴,可得或.∴為直徑的圓過定點、.【點睛】關鍵點點睛:第二問,應用點斜式寫出直線、的方程,再求、坐標,根據定義求為直徑的圓的方程,最后令及在橢圓上求定點.22、(1)(2)(3)【解析】(1)根據列舉法列出所有的可能基本事件,進而得出每個學生恰好拿到自己作業的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Chitinovorin-A-生命科學試劑-MCE
- 自身免疫性關節炎治療新突破:2025年免疫治療應用案例分析
- 物聯網設備安全漏洞防護策略與智能交通安全報告2025
- 工業互聯網平臺邊緣計算硬件架構創新設計研究報告
- 2025年不良資產處置行業市場格局與創新模式發展策略研究
- 低碳城市規劃與城市交通擁堵治理案例解析
- 電商知識產權保護與電子商務平臺知識產權保護與知識產權保護法律法規實施報告
- 審計處突發事件應急預案突發事件應急預案【六篇】
- 華晨寶馬供應商管理制度
- 智慧食堂個人管理制度
- 移動OA系統建設方案
- 2024年重慶高考化學試題卷(含答案解析)
- 人體器官講解課件
- DB3301-T 0256-2024 城市生態河道建設管理規范
- 2023年南京市衛健委所屬部分事業單位招聘考試試題及答案
- 《管理會計》說課及試講
- 二手農機買賣合同協議書
- 2024年大學試題(宗教學)-伊斯蘭教文化筆試考試歷年典型考題及考點含含答案
- 機床安全 壓力機 第 2 部分:機械壓力機安全要求
- 住院醫師規范化培訓臨床小講課的設計與實施培訓課件
- 多圖中華民族共同體概論課件第十三講先鋒隊與中華民族獨立解放(1919-1949)根據高等教育出版社教材制作
評論
0/150
提交評論