




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Deepfakes
and
Detection姜育剛,馬興軍,吳祖煊Recap:
week9MembershipInferenceAttackDifferentialPrivacyThisWeekGeneralTampering(一般數據篡改)Deepfake(深度偽造,圖像)DeepfakeVideos(深度偽造,視頻)DetectionDALL·E3OpenAIText2Image,
ImageEditing…Imagen
2GoogleText2Image,
Text2VedioStableDiffusion
3StabilityAIText2Image,
ImageEditing…SignificantProgressinComputerVisionThis
person
does
not
exist,/
AnAI-generatedportraitsoldfor$432,000attheChristie‘s(2018)AIartworkwonfirstprizeinartcompetition.(2022)Theresolutionandfidelityofgeneratedfaceimagesareconstantlyimproving.20192021SignificantProgressinComputerVisionGenerateanimageusingthefirstparagraphof"OneHundredYearsofSolitude"
(2021)DaLL·E2(2022)Generateanimagebasedontext:“Ihave
alwayswantedtobeacoolpandaridingaskateboardinSantaMonica.”Imagic(2022)Editimageswithtext.SignificantProgressinComputerVisionDataTamperingandForgeryDefinition:Tamperimagesandvideoswithvarietyoftechniques,suchasdeepfakes.Accordingtothecontentandtypeofthetampereddata:
generaltampering&faceforgery.
AfakeimageaboutBushJr.electionThisWeek
GeneralTamperingDeepfakeDeepfakeVideosDetectionGeneralTamperingDefinition:tampertheoriginalimagebyadjustingthespatialpositionofobjects,replacingtheoriginalcontentwithforgedcontent(stylemodification,texturetransformation,imagerestoration…)
TaxonomyContext-basedtamperforegroundobjectstamperimagebackgroundConditionedText-guidedimagetamperingGeneralTamperingModeldifferentelementsintheimage:theshapeofobjects,theinteractionbetweenobjectsandtheirrelativepositions,…
?CoreProblem:howtodecoupledifferentelementsinanimage?(Foreground&Background,Texture&Structure,…)ForegroundTamperingConstructobject-levelsemanticsegmentationmapsHong,S
et
al.
Learninghierarchicalsemanticimagemanipulationthroughstructured
representations.
NeurIPS,
2018.BackgroundTamperingZou,Z
et
al.Castleinthesky:dynamicskyreplacementandharmonizationinvideos.
IEEETransactionsonImageProcessing.
2022.thebackgroundcanbeviewedasalargerobjectText-guidedTampering|CLIPRadford,A.
et
al.Learningtransferablevisualmodelsfromnaturallanguagesupervision.
ICML,
2021.Text-guidedTampering|CLIP+StyleGANPatashnik,O.
et
al.Styleclip:text-drivenmanipulationofstyleganimagery.
ICCV,
2021.Text-guidedTampering|StyleGANLatent
codeMapping
functionResidual
codetarget
codePatashnik,O.
et
al.Styleclip:text-drivenmanipulationofstyleganimagery.
ICCV,
2021.Text-guidedTampering|DiffusionHo,J.
et
al.Denoisingdiffusionprobabilisticmodels.NeurIPS,
2020.ThedirectedgraphicalmodelofDDPMGraphicalmodelsfordiffusion(left)andnon-Markovian(right)inferencemodelsSong,J.
et
al.Denoisingdiffusionimplicitmodels.ICLR,
2022.Text-guidedTampering|CLIP+DiffusionRombachR.etal.High-resolutionimagesynthesiswithlatentdiffusionmodels,
CVPR,2022.StableDiffusionThisWeekGeneralTampering
DeepfakeDeepfakeVideosDetectionDeepfakeDefinition:
believablemediageneratedbyadeepneuralnetworkForm:
generation&manipulationofhumanimageryDeeplearning+fakeGANs(GenerativeAdversarialNetworks)Derivesfromthe“zero-sumgame”ingametheory.LearnthedistributionofdatathroughaGeneratorandaDiscriminatorFaceForgeryAlice’sbodywithBob’sfaceAliceBobDatacollectionModeltrainingDeepfakefaceforgeryFaceForgeryDatacollectionModeltrainingDeepfakefaceforgeryFaceForgeryDatacollectionModeltrainingDeepfakefaceforgeryFaceForgeryReenactment(人臉重演)Replacement(人臉互換)Editing(人臉編輯)Synthesis(人臉合成)MirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys(CSUR),2021,54(1):1-41.
FaceForgerySTEPS:DetectsandcropsthefaceExtractsintermediaterepresentationsGeneratesanewfacebasedonsomedrivingsignalBlendsthegeneratedfacebackintothetargetframeMirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys(CSUR),2021,54(1):1-41.FaceReenactmentSTEPSingeneral:facetracking(面部追蹤)facematching(面部匹配)facetransfer(面部遷移)PareidoliaFaceReenactmentSong,L.
et
al.Everything‘stalkin’:pareidoliafacereenactment.CVPR,
2021.pareidoliafacereenactmentPareidoliaFaceReenactmentChallengesThetargetfacesarenothumanfaces1Shapevariance2Texturevariancee.g.squaremouthe.g.woodtextureSong,L.
et
al.Everything‘stalkin’:pareidoliafacereenactment.CVPR,
2021.PURAParametricUnsupervisedReenactmentAlgorithmParametricShapeModeling(PSM,參數化形狀建模)ExpansionaryMotionTransfer(EMT,擴展運動遷移)UnsupervisedTextureSynthesizer
(UTS,無監督紋理合成器)Song,L.
et
al.Everything‘stalkin’:pareidoliafacereenactment.CVPR,
2021.PURAParametricUnsupervisedReenactmentAlgorithmSong,L.
et
al.Everything‘stalkin’:pareidoliafacereenactment.CVPR,
2021.FaceReplacement|SimswapHighFidelityFaceSwappingChen,R.
et
al.Simswap:anefficientframeworkforhighfidelityfaceswapping.ACMMM,
2021.?lacktheabilitytogeneralizetoarbitraryidentity?failtopreserveattributeslikefacialexpressionandgazedirectionIDInjectionModule(IIM)(身份注入模塊)WeakFeatureMatchingLoss(弱特征匹配損失)FaceReplacement|SimswapHighFidelityFaceSwappingChen,R.,et
al.
Simswap:anefficientframeworkforhighfidelityfaceswapping.ACMMM,
2020FaceReplacement|SimswapIdentityLossWeakFeatureMatchingLossChen,R.,et
al.
Simswap:anefficientframeworkforhighfidelityfaceswapping.ACMMM,
2020ThisWeekGeneralTamperingDeepfake
DeepfakeVideosDetectionDeepfakeVideosMoredimensions:TiminginformationTherelativepositionofdifferentsubjectsandobjectsAudiofakesDeepfakeVideosChallengesHowtogeneratereasonablegesturesHowtogenerateafakevideoinhighresolutionHowtogeneratehigh-qualitylongvideosReasonableGesturesSiarohin,A.
et
al.Firstordermotionmodelforimageanimation.
NeurIPS,
2-19.First-order-motionModelReasonableGesturesSiarohin,A.
et
al.
Firstordermotionmodelforimageanimation.
NeurIPS,
2019.MotionEstimationModuleUseasetoflearnedkeypointsandtheiraffinetransformationstopredictdensemotionReasonableGesturesGenerationModuleWarpthesourceimageaccordingtoInpainttheimagepartsthatareoccludedinthesourceimage.Siarohin,A.
et
al.
Firstordermotionmodelforimageanimation.
NeurIPS,
2019.HighResolutionTian,Y.,
et
al.
Agoodimagegeneratoriswhatyouneedforhigh-resolutionvideosynthesis.ICLR,
2022.MoCoGAN-HDHigh-qualityLongVideosYu,S.
et
al.Generatingvideoswithdynamics-awareimplicitgenerativeadversarialnetworks.arXivpreprintarXiv:2202.10571.DIGANThisWeekGeneralTamperingDeepfakeDeepfakeVideos
DetectionTamperingDetectionTaxonomy:GeneralTamperingDetection——whetheranordinaryobjectinanimagehasbeentamperedwithDeepfakeDetection——whetherthepartofthefaceintheimagehasbeentamperedwithFeatures&SemanticsGeneralTamperingDetectionExistinggeneraltamperingdetectionmethodsmainlyfocusonsplicing,copy-moveandremovalGeneralTamperingDetectionEarlydetectionmethodsImageTamperingThecorrelationbetweenpixelsintroducedduringcameraimaging(LCA,…)Thefrequency-domainorstatisticalfeaturesoftheimageandthenoiseitcontains(PRNU)GeneralTamperingDetectionCopy-moveDetectionMethodsBlock-basedregionduplicationDivideanimageintomanyequal-sizeblocks,andifduplicatedregionsexistintheimage,thereshouldbeduplicatedblocksaswell.Comparetheblocks.(Pixelvalues,Statisticalmeasures,Frequencycoefficients,Momentinvariants,…)Keypoint-basedregionduplicationConcentrateonafewkeypointswithinanimagesothecomputationcostcanbesignificantlyreduced.(SIFT,SURF)SplicingDetectionMethodsEdgeanomalyRegionanomaly:JPEGcompressionRegionanomaly:lightinginconsistencyRegionanomaly:inconsistencesofcameratracesGeneralTamperingDetectionGeneralTamperingDetectionRemovalDetectionMethodsBlurringartifactsbydiffusion-basedtamperingBlockduplicationbyexemplar-basedtamperingGeneralTamperingDetectionLaterdetectionmethods(DL)Medianfilteringforensics+CNN(Chenetal.,2015)RGB-N(Zhouetal.,2018)SPAN,spatialpyramidattentionnetwork(Huetal.,2020)Mantra-Net(Wuetal.,2019)PSCC-Net,progressivespatio-channelcorrelationnetwork(Liuetal.,2022)CountermeasuresDetectionPreventionMirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys,2021,54(1):1-41.Detection|Artifact-specificDeepfakesoftengenerateartifactswhichmaybesubtletohumans,butcanbeeasilydetectedusingmachinelearningandforensicanalysis.Blending
(spatial)Environment(spatial)
Forensics(spatial)
Behavior(temporal)Physiology(temporal)Synchronization
(temporal)Coherence(temporal)MirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys,2021,54(1):1-41.BlendingTrainedaCNNtopredictanimage’sblendingboundaryandalabel(realorfake)LingzhiLi,et
al.Facex-rayformoregeneralfaceforgerydetection.CVPR,
2020.BlendingSplicesimilarfacesfoundthroughfaciallandmarksimilaritytogenerateadatasetoffaceswaps.OverviewofgeneratingatrainingsampleLingzhiLi,et
al.Facex-rayformoregeneralfaceforgerydetection.CVPR,
2020.ForensicsDetectdeepfakesbyanalyzingsubtlefeaturesandpatternsleftbythemodel.GANsleaveuniquefingerprintsItispossibletoclassifythegeneratorgiventhecontent,eveninthepresenceofcompressionandnoiseNingYu
et
al.AttributingfakeimagestoGANs:LearningandanalyzingGANfingerprints.ICCV,
2019.Detection|UndirectedApproachesTraindeepneuralnetworksasgenericclassifiers,andletthenetworkdecidewhichfeaturestoanalyze.ClassificationAnomalyDetectionClassificationTharinduF.,
et
al.
ExploitingHumanSocialCognitionfortheDetectionofFakeandFraudulentFacesviaMemoryNetworks.
arXiv:1911.07844.HierarchicalMemoryNetwork(HMN)architectureAnomalyDetectionanomalydetectionmodelsaretrainedonthenormaldataandthendetectoutliersduringdeployment.RunWang
et
al.Fakespotter:
Asimplebaselineforspottingai-synthesizedfakefaces.arXiv:1909.06122.Monitorneuronbehaviors(coverage)tospotAI-synthesizedfakefaces.Obtainastrongersignalfromthanjustusingtherawpixels.Isabletoovercomenoiseandotherdistortions.Detection|SummaryMirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys,2021.Detection|SummaryMirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys,2021.Prevention&MitigationDataprovenance(數據溯源)Dataprovenanceofmultimediashouldbetrackedthroughdistributedledgersandblockchainnetworks.(Fraga-Lamasetal.,2019)ThecontentshouldberankedbyparticipantsandAI.(Chenetal.,2019.)Thecon
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蔬果罐頭生產環境與設施衛生管理考核試卷
- 郵件包裹運輸與城市物流配送協同考核試卷
- 心肌梗塞急救教學
- 葡萄胎疾病的護理
- 新兵應急救護常識
- 急性上呼吸道異物梗阻急救處理
- 遏制人工智能的惡意使用(2025)中文
- 當虹科技公司深度報告:預研成果步入落地期智能座艙、工業及衛星驅動新增長
- 2025年科技企業孵化器建設資金申請關鍵指標與評估報告
- 新消費時代2025年寵物市場細分需求洞察:寵物用品與配件創新方向報告
- 陜西省專業技術人員繼續教育2025公需課《黨的二十屆三中全會精神解讀與高質量發展》20學時題庫及答案
- 福利院財務管理制度
- 重慶萬州區社區工作者招聘筆試真題2024
- 2025北方聯合電力有限責任公司社會招聘高校畢業生114人筆試參考題庫附帶答案詳解析集合
- 郴州市2025年中考第二次模考歷史試卷
- 酒店項目規劃設計方案(模板)
- 2025名著導讀《鋼鐵是怎樣煉成的》閱讀習題(含答案)
- 2025年供應鏈管理考試題及答案
- 2025-2030中國冷熱交換器行業市場現狀分析及競爭格局與投資發展研究報告
- 學習通《科研誠信與學術規范》課后及考試答案
- 陜09J01 建筑用料及做法圖集
評論
0/150
提交評論