




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江寧波江北區2024屆中考數學猜題卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在△ABC中,AB=AC=5,BC=8,D是線段BC上的動點(不含端點B,C).若線段AD長為正整數,則點D的個數共有()A.5個 B.4個 C.3個 D.2個2.將拋物線y=x2向左平移2個單位,再向下平移5個單位,平移后所得新拋物線的表達式為()A.y=(x+2)2﹣5B.y=(x+2)2+5C.y=(x﹣2)2﹣5D.y=(x﹣2)2+53.如圖,在正方形ABCD和正方形CEFG中,點D在CG上,BC=1,CE=3,連接AF交CG于M點,則FM=()A. B. C. D.4.下列對一元二次方程x2+x﹣3=0根的情況的判斷,正確的是()A.有兩個不相等實數根 B.有兩個相等實數根C.有且只有一個實數根 D.沒有實數根5.根據下表中的二次函數的自變量與函數的對應值,可判斷該二次函數的圖象與軸().
…
…
…
…A.只有一個交點 B.有兩個交點,且它們分別在軸兩側C.有兩個交點,且它們均在軸同側 D.無交點6.如圖所示,在長方形紙片ABCD中,AB=32cm,把長方形紙片沿AC折疊,點B落在點E處,AE交DC于點F,AF=25cm,則AD的長為()A.16cm B.20cm C.24cm D.28cm7.施工隊要鋪設1000米的管道,因在中考期間需停工2天,每天要比原計劃多施工30米才能按時完成任務.設原計劃每天施工x米,所列方程正確的是()A.=2 B.=2C.=2 D.=28.如圖,兩個轉盤A,B都被分成了3個全等的扇形,在每一扇形內均標有不同的自然數,固定指針,同時轉動轉盤A,B,兩個轉盤停止后觀察兩個指針所指扇形內的數字(若指針停在扇形的邊線上,當作指向上邊的扇形).小明每轉動一次就記錄數據,并算出兩數之和,其中“和為7”的頻數及頻率如下表:轉盤總次數10203050100150180240330450“和為7”出現頻數27101630465981110150“和為7”出現頻率0.200.350.330.320.300.300.330.340.330.33如果實驗繼續進行下去,根據上表數據,出現“和為7”的頻率將穩定在它的概率附近,估計出現“和為7”的概率為()A.0.33 B.0.34 C.0.20 D.0.359.如果關于x的分式方程有負分數解,且關于x的不等式組的解集為x<-2,那么符合條件的所有整數a的積是()A.-3 B.0 C.3 D.910.如圖,菱形ABCD的對角線交于點O,AC=8cm,BD=6cm,則菱形的高為()A.cm B.cm C.cm D.cm二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,直線l經過⊙O的圓心O,與⊙O交于A、B兩點,點C在⊙O上,∠AOC=30°,點P是直線l上的一個動點(與圓心O不重合),直線CP與⊙O相交于點Q,且PQ=OQ,則滿足條件的∠OCP的大小為_______.12.若x=-1,則x2+2x+1=__________.13.已知拋物線y=x2﹣x+3與y軸相交于點M,其頂點為N,平移該拋物線,使點M平移后的對應點M′與點N重合,則平移后的拋物線的解析式為_____.14.下面是用棋子擺成的“上”字:如果按照以上規律繼續擺下去,那么通過觀察,可以發現:第n個“上”字需用_____枚棋子.15.如圖,已知P是線段AB的黃金分割點,且PA>PB.若S1表示以PA為一邊的正方形的面積,S2表示長是AB、寬是PB的矩形的面積,則S1_______S2.(填“>”“="”“"<”)16.小球在如圖所示的地板上自由地滾動,并隨機地停留在某塊方磚上,那么小球最終停留在黑色區域的概率是_____________________.三、解答題(共8題,共72分)17.(8分)如圖,矩形中,對角線、交于點,以、為鄰邊作平行四邊形,連接求證:四邊形是菱形若,,求四邊形的面積18.(8分)計算:(﹣2)2+20180﹣19.(8分)如圖,在中,,是邊上的高線,平分交于點,經過,兩點的交于點,交于點,為的直徑.(1)求證:是的切線;(2)當,時,求的半徑.20.(8分)如圖,在矩形ABCD中,AB=3,AD=4,P沿射線BD運動,連接AP,將線段AP繞點P順時針旋轉90°得線段PQ.(1)當點Q落到AD上時,∠PAB=____°,PA=_____,長為_____;(2)當AP⊥BD時,記此時點P為P0,點Q為Q0,移動點P的位置,求∠QQ0D的大小;(3)在點P運動中,當以點Q為圓心,BP為半徑的圓與直線BD相切時,求BP的長度;(4)點P在線段BD上,由B向D運動過程(包含B、D兩點)中,求CQ的取值范圍,直接寫出結果.21.(8分)如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經過點D,分別交AC、AB于點E.F.試判斷直線BC與⊙O的位置關系,并說明理由;若BD=23,BF=2,求⊙O的半徑.22.(10分)某校決定加強羽毛球、籃球、乒乓球、排球、足球五項球類運動,每位同學必須且只能選擇一項球類運動,對該校學生隨機抽取進行調查,根據調查結果繪制了如下不完整的頻數分布表和扇形統計圖:運動項目
頻數(人數)
羽毛球
30
籃球
乒乓球
36
排球
足球
12
請根據以上圖表信息解答下列問題:頻數分布表中的,;在扇形統計圖中,“排球”所在的扇形的圓心角為度;全校有多少名學生選擇參加乒乓球運動?23.(12分)某公司今年1月份的生產成本是400萬元,由于改進技術,生產成本逐月下降,3月份的生產成本是361萬元.假設該公司2、3、4月每個月生產成本的下降率都相同.求每個月生產成本的下降率;請你預測4月份該公司的生產成本.24.網上購物已經成為人們常用的一種購物方式,售后評價特別引人關注,消費者在網店購買某種商品后,對其有“好評”、“中評”、“差評”三種評價,假設這三種評價是等可能的.(1)小明對一家網店銷售某種商品顯示的評價信息進行了統計,并列出了兩幅不完整的統計圖.利用圖中所提供的信息解決以下問題:①小明一共統計了個評價;②請將圖1補充完整;③圖2中“差評”所占的百分比是;(2)若甲、乙兩名消費者在該網店購買了同一商品,請你用列表格或畫樹狀圖的方法幫助店主求一下兩人中至少有一個給“好評”的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:過A作AE⊥BC于E,∵AB=AC=5,BC=8,∴BE=EC=4,∴AE=3,∵D是線段BC上的動點(不含端點B,C),∴AE≤AD<AB,即3≤AD<5,∵AD為正整數,∴AD=3或AD=4,當AD=4時,E的左右兩邊各有一個點D滿足條件,∴點D的個數共有3個.故選C.考點:等腰三角形的性質;勾股定理.2、A【解析】
直接根據“上加下減,左加右減”的原則進行解答即可.【詳解】拋物線y=x2的頂點坐標為(0,0),先向左平移2個單位再向下平移1個單位后的拋物線的頂點坐標為(﹣2,﹣1),所以,平移后的拋物線的解析式為y=(x+2)2﹣1.故選:A.【點睛】本題考查了二次函數的圖象與幾何變換,熟知函數圖象平移的法則是解答本題的關鍵.3、C【解析】
由正方形的性質知DG=CG-CD=2、AD∥GF,據此證△ADM∽△FGM得,求出GM的長,再利用勾股定理求解可得答案.【詳解】解:∵四邊形ABCD和四邊形CEFG是正方形,
∴AD=CD=BC=1、CE=CG=GF=3,∠ADM=∠G=90°,
∴DG=CG-CD=2,AD∥GF,
則△ADM∽△FGM,∴,即,解得:GM=,∴FM===,故選:C.【點睛】本題主要考查相似三角形的判定與性質,解題的關鍵是熟練掌握正方形的性質、相似三角形的判定與性質及勾股定理等知識點.4、A【解析】【分析】根據方程的系數結合根的判別式,即可得出△=13>0,進而即可得出方程x2+x﹣3=0有兩個不相等的實數根.【詳解】∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有兩個不相等的實數根,故選A.【點睛】本題考查了根的判別式,一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數根;(2)△=0?方程有兩個相等的實數根;(3)△<0?方程沒有實數根.5、B【解析】
根據表中數據可得拋物線的對稱軸為x=1,拋物線的開口方向向上,再根據拋物線的對稱性即可作出判斷.【詳解】解:由題意得拋物線的對稱軸為x=1,拋物線的開口方向向上則該二次函數的圖像與軸有兩個交點,且它們分別在軸兩側故選B.【點睛】本題考查二次函數的性質,屬于基礎應用題,只需學生熟練掌握拋物線的對稱性,即可完成.6、C【解析】
首先根據平行線的性質以及折疊的性質證明∠EAC=∠DCA,根據等角對等邊證明FC=AF,則DF即可求得,然后在直角△ADF中利用勾股定理求解.【詳解】∵長方形ABCD中,AB∥CD,∴∠BAC=∠DCA,又∵∠BAC=∠EAC,∴∠EAC=∠DCA,∴FC=AF=25cm,又∵長方形ABCD中,DC=AB=32cm,∴DF=DC-FC=32-25=7cm,在直角△ADF中,AD==24(cm).故選C.【點睛】本題考查了折疊的性質以及勾股定理,在折疊的過程中注意到相等的角以及相等的線段是關鍵.7、A【解析】分析:設原計劃每天施工x米,則實際每天施工(x+30)米,根據:原計劃所用時間﹣實際所用時間=2,列出方程即可.詳解:設原計劃每天施工x米,則實際每天施工(x+30)米,根據題意,可列方程:=2,故選A.點睛:本題考查了由實際問題抽象出分式方程,關鍵是讀懂題意,找出合適的等量關系,列出方程.8、A【解析】
根據上表數據,出現“和為7”的頻率將穩定在它的概率附近,估計出現“和為7”的概率即可.【詳解】由表中數據可知,出現“和為7”的概率為0.33.故選A.【點睛】本題考查了利用頻率估計概率:大量重復實驗時,事件發生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數的增多,值越來越精確.9、D【解析】解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式組的解集為x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即,符合題意;把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合題意;把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即,符合題意;把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合題意;把a=1代入整式方程得:﹣3x﹣2=1﹣x,即,符合題意;把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合題意;把a=3代入整式方程得:﹣3x=1﹣x,即,符合題意;把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合題意,∴符合條件的整數a取值為﹣3;﹣1;1;3,之積為1.故選D.10、B【解析】試題解析:∵菱形ABCD的對角線根據勾股定理,設菱形的高為h,則菱形的面積即解得即菱形的高為cm.故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°12、2【解析】
先利用完全平方公式對所求式子進行變形,然后代入x的值進行計算即可.【詳解】∵x=-1,∴x2+2x+1=(x+1)2=(-1+1)2=2,故答案為:2.【點睛】本題考查了代數式求值,涉及了因式分解,二次根式的性質等,熟練掌握相關知識是解題的關鍵.13、y=(x﹣1)2+【解析】
直接利用拋物線與坐標軸交點求法結合頂點坐標求法分別得出M、N點坐標,進而得出平移方向和距離,即可得出平移后解析式.【詳解】解:y=x2-x+3=(x-)2+,∴N點坐標為:(,),令x=0,則y=3,∴M點的坐標是(0,3).∵平移該拋物線,使點M平移后的對應點M′與點N重合,∴拋物線向下平移個單位長度,再向右平移個單位長度即可,∴平移后的解析式為:y=(x-1)2+.故答案是:y=(x-1)2+.【點睛】此題主要考查了拋物線與坐標軸交點求法以及二次函數的平移,正確得出平移方向和距離是解題關鍵.14、4n+2【解析】∵第1個有:6=4×1+2;第2個有:10=4×2+2;第3個有:14=4×3+2;……∴第1個有:4n+2;故答案為4n+215、=.【解析】
黃金分割點,二次根式化簡.【詳解】設AB=1,由P是線段AB的黃金分割點,且PA>PB,根據黃金分割點的,AP=,BP=.∴.∴S1=S1.16、2【解析】試題分析:根據題意和圖示,可知所有的等可能性為18種,然后可知落在黑色區域的可能有4種,因此可求得小球停留在黑色區域的概率為:418三、解答題(共8題,共72分)17、(1)見解析;(2)S四邊形ADOE=.【解析】
(1)根據矩形的性質有OA=OB=OC=OD,根據四邊形ADOE是平行四邊形,得到OD∥AE,AE=OD.等量代換得到AE=OB.即可證明四邊形AOBE為平行四邊形.根據有一組鄰邊相等的平行四邊形是菱形即可證明.(2)根據菱形的性質有∠EAB=∠BAO.根據矩形的性質有AB∥CD,根據平行線的性質有∠BAC=∠ACD,求出∠DCA=60°,求出AD=.根據面積公式SΔADC,即可求解.【詳解】(1)證明:∵矩形ABCD,∴OA=OB=OC=OD.∵平行四邊形ADOE,∴OD∥AE,AE=OD.∴AE=OB.∴四邊形AOBE為平行四邊形.∵OA=OB,∴四邊形AOBE為菱形.(2)解:∵菱形AOBE,∴∠EAB=∠BAO.∵矩形ABCD,∴AB∥CD.∴∠BAC=∠ACD,∠ADC=90°.∴∠EAB=∠BAO=∠DCA.∵∠EAO+∠DCO=180°,∴∠DCA=60°.∵DC=2,∴AD=.∴SΔADC=.∴S四邊形ADOE=.【點睛】考查平行四邊形的判定與性質,矩形的性質,菱形的判定與性質,解直角三角形,綜合性比較強.18、﹣1【解析】分析:首先計算乘方、零次冪和開平方,然后再計算加減即可.詳解:原式=4+1-6=-1.點睛:此題主要考查了實數的運算,關鍵是掌握乘方的意義、零次冪計算公式和二次根式的性質.19、(1)見解析;(2)的半徑是.【解析】
(1)連結,易證,由于是邊上的高線,從而可知,所以是的切線.(2)由于,從而可知,由,可知:,易證,所以,再證明,所以,從而可求出.【詳解】解:(1)連結.∵平分,∴,又,∴,∴,∵是邊上的高線,∴,∴,∴是的切線.(2)∵,∴,,∴是中點,∴,∵,∴,∵,,∴,∴,又∵,∴,在中,,∴,∴,,而,∴,∴,∴的半徑是.【點睛】本題考查圓的綜合問題,涉及銳角三角函數,相似三角形的判定與性質,等腰三角形的性質等知識,綜合程度較高,需要學生綜合運用知識的能力.20、(1)45,,π;(2)滿足條件的∠QQ0D為45°或135°;(3)BP的長為或;(4)≤CQ≤7.【解析】
(1)由已知,可知△APQ為等腰直角三角形,可得∠PAB,再利用三角形相似可得PA,及弧AQ的長度;(2)分點Q在BD上方和下方的情況討論求解即可.(3)分別討論點Q在BD上方和下方的情況,利用切線性質,在由(2)用BP0表示BP,由射影定理計算即可;(4)由(2)可知,點Q在過點Qo,且與BD夾角為45°的線段EF上運動,有圖形可知,當點Q運動到點E時,CQ最長為7,再由垂線段最短,應用面積法求CQ最小值.【詳解】解:(1)如圖,過點P做PE⊥AD于點E由已知,AP=PQ,∠APQ=90°∴△APQ為等腰直角三角形∴∠PAQ=∠PAB=45°設PE=x,則AE=x,DE=4﹣x∵PE∥AB∴△DEP∽△DAB∴=∴=解得x=∴PA=PE=∴弧AQ的長為?2π?=π.故答案為45,,π.(2)如圖,過點Q做QF⊥BD于點F由∠APQ=90°,∴∠APP0+∠QPD=90°∵∠P0AP+∠APP0=90°∴∠QPD=∠P0AP∵AP=PQ∴△APP0≌△PQF∴AP0=PF,P0P=QF∵AP0=P0Q0∴Q0D=P0P∴QF=FQ0∴∠QQ0D=45°.當點Q在BD的右下方時,同理可得∠PQ0Q=45°,此時∠QQ0D=135°,綜上所述,滿足條件的∠QQ0D為45°或135°.(3)如圖當點Q直線BD上方,當以點Q為圓心,BP為半徑的圓與直線BD相切時過點Q做QF⊥BD于點F,則QF=BP由(2)可知,PP0=BP∴BP0=BP∵AB=3,AD=4∴BD=5∵△ABP0∽△DBA∴AB2=BP0?BD∴9=BP×5∴BP=同理,當點Q位于BD下方時,可求得BP=故BP的長為或(4)由(2)可知∠QQ0D=45°則如圖,點Q在過點Q0,且與BD夾角為45°的線段EF上運動,當點P與點B重合時,點Q與點F重合,此時,CF=4﹣3=1當點P與點D重合時,點Q與點E重合,此時,CE=4+3=7∴EF===5過點C做CH⊥EF于點H由面積法可知CH===∴CQ的取值范圍為:≤CQ≤7【點睛】本題是幾何綜合題,考查了三角形全等、勾股定理、切線性質以及三角形相似的相關知識,應用了分類討論和數形結合的數學思想.21、(1)相切,理由見解析;(1)1.【解析】
(1)求出OD//AC,得到OD⊥BC,根據切線的判定得出即可;(1)根據勾股定理得出方程,求出方程的解即可.【詳解】(1)直線BC與⊙O的位置關系是相切,理由是:連接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,即OD⊥BC,∵OD為半徑,∴直線BC與⊙O的位置關系是相切;(1)設⊙O的半徑為R,則OD=OF=R,在Rt△BDO中,由勾股定理得:OB2=BD2+OD2,即(R+1)2=(13)2+R2,解得:R=1,即⊙O的半徑是1.【點睛】此題考查切線的判定,勾股定理,解題關鍵在于求出OD⊥BC.22、(1)24,1;(2)54;(3)360.【解析】
(1)根據選擇乒乓球運動的人數是36人,對應的百分比是30%,即可求得總人數,然后利用百分比的定義求得a,用總人數減去其它組的人數求得b;(2)利用360°乘以對應的百分比即可求得;(3)求得全校總人數,然后利用總人數乘以對應的百分比求解.【詳解】(1)抽取的人數是36÷30%=120(人),則a=120×2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 甘肅靖遠縣高三數學試卷
- 高校聯盟數學試卷
- 方城縣中學二模數學試卷
- 關于千克方面的數學試卷
- 2025年甘肅中醫藥大學招聘41人筆試歷年專業考點(難、易錯點)附帶答案詳解
- 2025至2030船體清潔機器人行業市場深度調研及前景趨勢與投資報告
- 贛州高考二模數學試卷
- 二年級畢業題數學試卷
- 高一集合數學試卷
- 體育賽事官方藝術家合作項目的社區參與度分析考核試卷
- 2025河南省豫地科技集團社會招聘169人筆試參考題庫附帶答案詳解
- 人教版(2024)七年級下冊英語期末模擬測試卷(含答案)
- 兵團開放大學2025年春季《公共關系學》終結考試答案
- 電線電纜出入庫管理制度
- 供應蒸汽服務合同協議書
- T/CADCC 003-2024汽車漆面保護膜施工技術規程
- 中國機器人工程市場調研報告2025
- 2025年金融科技企業估值方法與投資策略在金融科技企業并購中的應用案例報告
- 福建省廈門市雙十中學2025屆七年級生物第二學期期末聯考模擬試題含解析
- 【小學】新蘇教版小學數學四年級下冊暑假每日一練(02):計算題-應用題(含答案)
- 2025豬藍耳病防控及凈化指南(第三版)
評論
0/150
提交評論