江蘇省蘇州工業園區星港學校2025屆數學九上期末聯考模擬試題含解析_第1頁
江蘇省蘇州工業園區星港學校2025屆數學九上期末聯考模擬試題含解析_第2頁
江蘇省蘇州工業園區星港學校2025屆數學九上期末聯考模擬試題含解析_第3頁
江蘇省蘇州工業園區星港學校2025屆數學九上期末聯考模擬試題含解析_第4頁
江蘇省蘇州工業園區星港學校2025屆數學九上期末聯考模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省蘇州工業園區星港學校2025屆數學九上期末聯考模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題3分,共30分)1.下列事件是隨機事件的是()A.畫一個三角形,其內角和是 B.射擊運動員射擊一次,命中靶心C.投擲一枚正六面體骰子,朝上一面的點數小于 D.在只裝了紅球的不透明袋子里,摸出黑球2.如圖,⊙O的直徑CD=10cm,AB是⊙O的弦,AB⊥CD,垂足為M,OM:OC=3:5,則AB的長為()A.cm B.8cm C.6cm D.4cm3.在皮影戲的表演中,要使銀幕上的投影放大,下列做法中正確的是()A.把投影燈向銀幕的相反方向移動 B.把剪影向投影燈方向移動C.把剪影向銀幕方向移動 D.把銀幕向投影燈方向移動4.二次函數y=ax1+bx+c(a≠0)的部分圖象如圖所示,圖象過點(-4,0),對稱軸為直線x=-1,下列結論:①abc>0;②1a-b=0;③一元二次方程ax1+bx+c=0的解是x1=-4,x1=1;④當y>0時,-4<x<1.其中正確的結論有(

)A.4個 B.3個 C.1個 D.1個5.一元二次方程的解為()A. B., C., D.,6.若一元二次方程有兩個相等的實數根,則m的值是()A.2 B. C. D.7.如圖,面積為的矩形在第二象限,與軸平行,反比例函數經過兩點,直線所在直線與軸、軸交于兩點,且為線段的三等分點,則的值為()A. B.C. D.8.如圖所示,在平行四邊形ABCD中,AC與BD相交于點O,E為OD的中點,連接AE并延長交DC于點F,則DF:FC=()A.1:3 B.1:4 C.2:3 D.1:29.已知(,),下列變形錯誤的是()A. B. C. D.10.如圖,AB為⊙O的直徑,點C,D在⊙O上.若∠AOD=30°,則∠BCD等于()A.75° B.95° C.100° D.105°二、填空題(每小題3分,共24分)11.若m是方程2x2﹣3x=1的一個根,則6m2﹣9m的值為_____.12.二次函數的圖象與軸只有一個公共點,則的值為________.13.關于x的一元二次方程有兩個不相等的實數根,則實數a的取值范圍是______.14.二次函數y=ax1+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=1,下列結論:①4a+b=0;②9a+c>3b;③8a+7b+1c>0;④若點A(﹣3,y1)、點B(,y1)、點C(,y3)在該函數圖象上,則y1<y3<y1;⑤若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x1,且x1<x1,則x1<﹣1<5<x1.其中正確的結論有_______個.15.方程和方程同解,________.16.某小區2019年的綠化面積為3000m2,計劃2021年的綠化面積為4320m2,如果每年綠化面積的增長率相同,設增長率為x,則可列方程為______.17.將二次函數化成的形式為__________.18.如圖,在中,,于點D,于點E,F、G分別是BC、DE的中點,若,則FG的長度為__________.三、解答題(共66分)19.(10分)(1)(學習心得)于彤同學在學習完“圓”這一章內容后,感覺到一些幾何問題如果添加輔助圓,運用圓的知識解決,可以使問題變得非常容易.例如:如圖1,在中,,是外一點,且,求的度數.若以點為圓心,為半徑作輔助,則、必在上,是的圓心角,而是圓周角,從而可容易得到=________.(2)(問題解決)如圖2,在四邊形中,,,求的度數.(3)(問題拓展)如圖3,是正方形的邊上兩個動點,滿足.連接交于點,連接交于點,連接交于點,若正方形的邊長為2,則線段長度的最小值是_______.20.(6分)如圖,四邊形ABCD的三個頂點A、B、D在⊙O上,BC經過圓心O,且交⊙O于點E,∠A=120°,∠C=30°.(1)求證:CD是⊙O的切線.(2)若CD=6,求BC的長.(3)若⊙O的半徑為4,則四邊形ABCD的最大面積為.21.(6分)解方程:(1)用公式法解方程:3x2﹣x﹣4=1(2)用配方法解方程:x2﹣4x﹣5=1.22.(8分)先鋒中學數學課題組為了了解初中學生閱讀數學教科書的現狀,隨機抽取某校部分初中學生進行調查,調查結果分為“重視”、“一般”、“不重視”、“說不清楚”四種情況(依次用A、B、C、D表示),依據相關數據繪制成以下不完整的統計表和統計圖,請根據圖表中的信息解答下列問題:類別頻數頻率重視a0.25一般600.3不重視bc說不清楚100.05(1)求樣本容量及表格中a,b,c的值,并補全統計圖;(2)若該校共有2000名學生,請估計該校“不重視閱讀數學教科書”的學生人數.23.(8分)一個小球沿著足夠長的光滑斜面向上滾動,它的速度與時間滿足一次函數關系,其部分數據如下表:(1)求小球的速度v與時間t的關系.(2)小球在運動過程中,離出發點的距離S與v的關系滿足,求S與t的關系式,并求出小球經過多長時間距離出發點32m?(3)求時間為多少時小球離出發點最遠,最遠距離為多少?24.(8分)解一元二次方程:x2﹣5x+6=1.25.(10分)已知拋物線(是常數)經過點.(1)求該拋物線的解析式和頂點坐標.(2)若點在拋物線上,且點關于原點的對稱點為.①當點落在該拋物線上時,求的值;②當點落在第二象限內,取得最小值時,求的值.26.(10分)如圖,某旅游景區為方便游客,修建了一條東西走向的木棧道AB,棧道AB與景區道路CD平行.在C處測得棧道一端A位于北偏西42°方向,在D處測得棧道另一端B位于北偏西32°方向.已知CD=120m,BD=80m,求木棧道AB的長度(結果保留整數).(參考數據:,,,,,)

參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據事件發生的可能性大小判斷相應事件的類型即可.【詳解】A、畫一個三角形,其內角和是360°是不可能事件,故本選項錯誤;

B、射擊運動員射擊一次,命中靶心是隨機事件,故本選項正確;

C、投擲一枚正六面體骰子,朝上一面的點數小于7是必然事件,故本選項錯誤;

D、在只裝了紅球的不透明袋子里,摸出黑球是不可能事件,故本選項錯誤.

故選:C.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發生的事件.不可能事件是指在一定條件下,一定不發生的事件,不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.2、B【分析】由于⊙O的直徑CD=10cm,則⊙O的半徑為5cm,又已知OM:OC=3:5,則可以求出OM=3,OC=5,連接OA,根據勾股定理和垂徑定理可求得AB.【詳解】解:如圖所示,連接OA.⊙O的直徑CD=10cm,則⊙O的半徑為5cm,即OA=OC=5,又∵OM:OC=3:5,所以OM=3,∵AB⊥CD,垂足為M,OC過圓心∴AM=BM,在Rt△AOM中,,∴AB=2AM=2×4=1.故選:B.【點睛】本題考查了垂徑定理和勾股定理的應用,構造以半徑、弦心距和弦長的一半為三邊的直角三角形,是解題的關鍵.3、B【分析】根據中心投影的特點可知:在燈光下,離點光源近的物體它的影子短,離點光源遠的物體它的影子長,據此分析判斷即可.【詳解】解:根據中心投影的特點可知,如圖,當投影燈接近銀幕時,投影會越來越大;相反當投影燈遠離銀幕時,投影會越來越小,故A錯誤;當剪影越接近銀幕時,投影會越來越小;相反當剪影遠離銀幕時,投影會越來越大,故B正確,C錯誤;當銀幕接近投影燈時,投影會越來越小;當銀幕遠離投影燈時,投影會越來越大,故D錯誤.

故選:B.【點睛】此題主要考查了中心投影的特點,熟練掌握中心投影的原理和特點是解題的關鍵.4、B【分析】根據拋物線的圖象與性質(對稱性、與x軸、y軸的交點)逐個判斷即可.【詳解】∵拋物線開口向下∵對稱軸同號,即∵拋物線與y軸的交點在x軸的上方,則①正確∵對稱軸,即,則②正確∵拋物線的對稱軸,拋物線與x軸的一個交點是∴由拋物線的對稱性得,拋物線與x軸的另一個交點坐標為,從而一元二次方程的解是,則③錯誤由圖象和③的分析可知:當時,,則④正確綜上,正確的結論有①②④這3個故選:B.【點睛】本題考查了二次函數的圖象與性質,熟記函數的圖象與性質是解題關鍵.5、C【分析】通過因式分解法解一元二次方程即可得出答案.【詳解】∴或∴,故選C【點睛】本題主要考查解一元二次方程,掌握因式分解法是解題的關鍵.6、D【分析】根據一元二次方程根的判別式,即可得到答案【詳解】解:∵一元二次方程有兩個相等的實數根,∴,解得:;故選擇:D.【點睛】本題考查了一元二次方程根的判別式,解題的關鍵是熟練掌握利用根的判別式求參數的值.7、C【分析】延長AB交x軸于點G,延長BC交y軸于點H,根據矩形面積求出的面積,通過平行可證明∽,∽,∽,然后利用相似的性質及三等分點可求出、、的面積,再求出四邊形BGOH的面積,然后通過反比例函數比例系數的幾何意義求出k值,再利用的面積求出b值即可.【詳解】延長AB交x軸于點G,延長BC交y軸于點H,如圖:∵矩形ABCD的面積為1,∴,∵B、D為線段EF的三等分點,∴,,,∵,∴,,∴∽,∴,即,∴,∵,∴,,∴∽,∴,即,∴,∵,∴,,∴∽,∴即,∴,∴,∵四邊形ABCD是矩形,∴,∵,,∴,,又∵,∴四邊形BGOH是矩形,根據反比例函數的比例系數的幾何意義可知:,∴,∴又∵,即,∴,∴直線EF的解析式為,令,得,令,即,解得,∴,,∵F點在軸的上方,∴,∴,,∵,即,∴.故選:C.【點睛】本題考查了相似三角形的判定與性質,反比例函數比例系數的幾何意義,一次函數與面積的結合,綜合性較強,需熟練掌握各性質定理及做題技巧.8、D【解析】解:在平行四邊形ABCD中,AB∥DC,則△DFE∽△BAE,∴DF:AB=DE:EB.∵O為對角線的交點,∴DO=BO.又∵E為OD的中點,∴DE=DB,則DE:EB=1:1,∴DF:AB=1:1.∵DC=AB,∴DF:DC=1:1,∴DF:FC=1:2.故選D.9、B【分析】根據兩內項之積等于兩外項之積對各項分析判斷即可得解.【詳解】解:由,得出,3b=4a,A.由等式性質可得:3b=4a,正確;B.由等式性質可得:4a=3b,錯誤;C.由等式性質可得:3b=4a,正確;D.由等式性質可得:4a=3b,正確.故答案為:B.【點睛】本題考查的知識點是等式的性質,熟記等式性質兩內項之積等于兩外項之積是解題的關鍵.10、D【解析】試題解析:連接故選D.點睛:圓內接四邊形的對角互補.二、填空題(每小題3分,共24分)11、1【分析】把m代入方程2x2﹣1x=1,得到2m2-1m=1,再把6m2-9m變形為1(2m2-1m),然后利用整體代入的方法計算.【詳解】解:∵m是方程2x2﹣1x=1的一個根,∴2m2﹣1m=1,∴6m2﹣9m=1(2m2﹣1m)=1×1=1.故答案為1.【點睛】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數的值是一元二次方程的解.12、【解析】根據△=b2-4ac=0時,拋物線與x軸有1個交點得到△=(-2)2-4m=0,然后解關于m的方程即可.【詳解】根據題意得△=(-2)2-4m=0,

解得m=1.

故答案是:1.【點睛】考查了拋物線與x軸的交點:對于二次函數y=ax2+bx+c(a,b,c是常數,a≠0),△=b2-4ac決定拋物線與x軸的交點個數:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.13、且【解析】由關于x的一元二次方程有兩個不相等的實數根,即可得判別式,繼而可求得a的范圍.【詳解】關于x的一元二次方程有兩個不相等的實數根,,解得:,方程是一元二次方程,,的范圍是:且,故答案為:且.【點睛】本題考查了一元二次方程判別式以及一元二次方程的定義,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:(1)△>0方程有兩個不相等的實數根;(2)△=0方程有兩個相等的實數根;(3)△<0方程沒有實數根.14、2【分析】根據二次函數的圖象與系數的關系即可求出答案.【詳解】①由對稱軸可知:x=?=1,∴4a+b=0,故①正確;②由圖可知:x=?2時,y<0,∴9a?2b+c<0,即9a+c<2b,故②錯誤;③令x=?1,y=0,∴a?b+c=0,∵b=?4a,∴c=?5a,∴8a+7b+1c=8a?18a?10a=?20a由開口可知:a<0,∴8a+7b+1c=?20a>0,故③正確;④點A(﹣2,y1)、點B(,y1)、點C(,y2)在該函數圖象上,由拋物線的對稱性可知:點C關于直線x=1的對稱點為(,y2),∵?2<<,∴y1<y1<y2故④錯誤;⑤由題意可知:(?1,0)關于直線x=1的對稱點為(5,0),∴二次函數y=ax1+bx+c=a(x+1)(x?5),令y=?2,∴直線y=?2與拋物線y=a(x+1)(x?5)的交點的橫坐標分別為x1,x1,∴x1<?l<5<x1故⑤正確;故正確的結論有2個答案為:2.【點睛】本題考查二次函數的圖象,解題的關鍵是正確理解二次函數的圖象與系數之間的關系,本題屬于中等題型.15、【解析】分別求解兩個方程的根即可.【詳解】解:,解得x=3或m;,解得x=3或-1,則m=-1,故答案為:-1.【點睛】本題考查了運用因式分解法解一元二次方程.16、3000(1+x)2=1【分析】設增長率為x,則2010年綠化面積為3000(1+x)m2,則2021年的綠化面積為3000(1+x)(1+x)m2,然后可得方程.【詳解】解:設增長率為x,由題意得:

3000(1+x)2=1,

故答案為:3000(1+x)2=1.【點睛】本題考查了由實際問題抽象出一元二次方程,關鍵是正確理解題意,找出題目中的等量關系.17、【分析】利用配方法整理即可得解.【詳解】解:,所以.故答案為.【點睛】本題考查了二次函數的解析式有三種形式:(1)一般式:為常數);(2)頂點式:;(3)交點式(與軸):.18、1【分析】連接EF、DF,根據直角三角形的性質得到EF=BC=20,得到FE=FD,根據等腰三角形的性質得到FG⊥DE,GE=GD=DE=12,根據勾股定理計算即可.【詳解】解:連接EF、DF,

∵BD⊥AC,F為BC的中點,

∴DF=BC=20,

同理,EF=BC=20,

∴FE=FD,又G為DE的中點,

∴FG⊥DE,GE=GD=DE=12,由勾股定理得,FG==1,故答案為:1.【點睛】本題考查的是直角三角形的性質、等腰三角形的性質,掌握在直角三角形中,斜邊上的中線等于斜邊的一半是解題的關鍵.三、解答題(共66分)19、(1)45;(2)25°;(3)【解析】(1)利用同弦所對的圓周角是所對圓心角的一半求解.(2)由A、B、C、D共圓,得出∠BDC=∠BAC,(3)根據正方形的性質可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“邊角邊”證明△ABE和△DCF全等,根據全等三角形對應角相等可得∠1=∠2,利用“SAS”證明△ADG和△CDG全等,根據全等三角形對應角相等可得∠2=∠3,從而得到∠1=∠3,然后求出∠AHB=90°,取AB的中點O,連接OH、OD,根據直角三角形斜邊上的中線等于斜邊的一半可得OH=AB=1,利用勾股定理列式求出OD,然后根據三角形的三邊關系可知當O、D、H三點共線時,DH的長度最小.【詳解】(1)如圖1,∵AB=AC,AD=AC,∴以點A為圓心,點B、C、D必在⊙A上,∵∠BAC是⊙A的圓心角,而∠BDC是圓周角,∴∠BDC=∠BAC=45°,故答案是:45;(2)如圖2,取BD的中點O,連接AO、CO.∵∠BAD=∠BCD=90°,∴點A、B、C、D共圓,∴∠BDC=∠BAC,∵∠BDC=25°,∴∠BAC=25°;(3)在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°?90°=90°,取AB的中點O,連接OH、OD,則OH=AO=AB=1,在Rt△AOD中,OD=,根據三角形的三邊關系,OH+DH>OD,∴當O、D、H三點共線時,DH的長度最小,最小值=OD?OH=?1.【點睛】本題主要考查了圓的綜合題,需要掌握垂徑定理、圓周角定理、等腰直角三角形的性質以及勾股定理等知識,難度偏大,解題時,注意輔助線的作法.20、(1)證明見解析;(2);(3).【分析】(1)連接、,根據圓內接四邊形的性質得到,求得,又點在上,于是得到結論;(2)由(1)知:又,設為,則為,根據勾股定理即可得到結論;(3)連接BD,OA,根據已知條件推出當四邊形ABOD的面積最大時,四邊形ABCD的面積最大,當OA⊥BD時,四邊形ABOD的面積最大,根據三角形和菱形的面積公式即可得到結論.【詳解】解:(1)證明:連接、,四邊形為圓內接四邊形,,,,又點在上,是的切線;(2)由(1)知:又,,設為,則為,在中,,即,,又,,;(3)連接,,,,,,,,,,,當四邊形的面積最大時,四邊形的面積最大,當時,四邊形的面積最大,四邊形的最大面積,故答案為:.【點睛】本題考查了圓的綜合題,切線的判定,勾股定理,三角形的面積的計算,正確的作出輔助線是解題的關鍵.21、(1)x1=,x2=-1;(2)x1=5,x2=-1.【分析】(1)根據一元二次方程的一般形式得出a、b、c的值,利用公式法x=即可得答案;(2)先把常數項移項,再把方程兩邊同時加上一次項系數一半的平方,即可得完全平方式,直接開平方即可得答案.【詳解】(1)3x2﹣x﹣4=1∵a=3,b=-1,c=-4,∴∴x1=,x1=-1.(2)x2﹣4x﹣5=1x2﹣4x+4=5+4(x﹣2)2=9∴x-2=3或x-2=-3∴x1=5,x2=-1.【點睛】本題考查解一元二次方程,一元二次方程的常用解法有:配方法、直接開平方法、公式法、因式分解法等,熟練掌握并靈活運用適當的方法是解題關鍵.22、(1)樣本容量為200,a=50,b=80,c=0.4,圖見解析;(2)800人【分析】(1)由“一般”的頻數及其頻率可得樣本容量,再根據頻率=頻數÷樣本容量及頻數之和等于總人數求解可得;(2)用總人數乘以樣本中“不重視”對應的頻率即可得.【詳解】(1)樣本容量為60÷0.3=200,則a=200×0.25=50,b=200﹣50﹣60﹣10=80,c=80÷200=0.4,補全條形圖如下:(2)估計該校“不重視閱讀數學教科書”的學生人數為2000×0.4=800(人).【點睛】本題主要考查了頻數分布直方表以及條形統計圖和利用樣本估計總體等知識.23、(1)v=-4t+20;(2)小球經過2s距離出發點32m;(3)當時間為5s時小球離出發點最遠,最遠距離為50m.【分析】(1)直接運用待定系數法即可;(2)將中的用第(1)問中求得的式子來做等量代換,化簡可得到S與t的關系式,令S=32時,得到關于t的方程,解出即可;(3)將S與t的關系式化成頂點式,即可求出S的最大值與相應的時間.【詳解】(1)設v=kt+b,將(2,12),(3,8)代入得:,解得所以v=-4t+20(2)∴當時,,∵當時,∴,答:小球經過2s距離出發點32m.(3)∵,∴當t=5時,v=0,m答:當時間為5s時小球離出發點最遠,最遠距離為50m.【點睛】本題考查了一次函數、一元二次方程、二次函數的應用,掌握好用待定系數法求函數解析式,一元二次方程的解法,二次函數的最值求法是解題的基

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論