安徽省沿淮教育聯盟2022-2023學年數學九上期末聯考模擬試題含解析_第1頁
安徽省沿淮教育聯盟2022-2023學年數學九上期末聯考模擬試題含解析_第2頁
安徽省沿淮教育聯盟2022-2023學年數學九上期末聯考模擬試題含解析_第3頁
安徽省沿淮教育聯盟2022-2023學年數學九上期末聯考模擬試題含解析_第4頁
安徽省沿淮教育聯盟2022-2023學年數學九上期末聯考模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每題4分,共48分)1.已知2x=3y,則下列比例式成立的是()A. B. C. D.2.已知關于x的方程x2-kx-6=0的一個根為x=-3,則實數k的值為()A.1 B.-1 C.2 D.-23.如圖所示,在矩形ABCD中,點F是BC的中點,DF的延長線與AB的延長線相交于點E,DE與AC相交于點O,若,則()A.4 B.6 C.8 D.104.一次函數y=﹣3x+b圖象上有兩點A(x1,y1),B(x2,y2),若x1<x2,則y1,y2的大小關系是()A.y1>y2 B.y1<y2C.y1=y2 D.無法比較y1,y2的大小5.如圖,在△ABC中,AB的垂直平分線交BC于D,AC的中垂線交BC于E,∠DAE=20°,則∠BAC的度數為()A.70° B.80° C.90° D.100°6.在Rt△ABC中,∠C=90°,若cosB=,則∠B的度數是()A.90° B.60° C.45° D.30°7.二次函數y=x2+(t﹣1)x+2t﹣1的對稱軸是y軸,則t的值為()A.0 B. C.1 D.28.如圖,△ABC的頂點都是正方形網格中的格點,則cos∠ABC等于()A. B. C. D.9.某學校要種植一塊面積為100m2的長方形草坪,要求兩邊長均不小于5m,則草坪的一邊長為y(單位:m)隨另一邊長x(單位:m)的變化而變化的圖象可能是()A. B. C. D.10.下列事件中,是隨機事件的是()A.任意畫一個三角形,其內角和為180° B.經過有交通信號的路口,遇到紅燈C.太陽從東方升起 D.任意一個五邊形的外角和等于540°11.如圖,數軸上的點,,,表示的數分別為,,,,從,,,四點中任意取兩點,所取兩點之間的距離為的概率是()A. B. C. D.12.如圖所示為兩把按不同比例尺進行刻度的直尺,每把直尺的刻度都是均勻的,已知兩把直尺在刻度10處是對齊的,且上面的直尺在刻度15處與下面的直尺在刻度18處也剛好對齊,則上面直尺的刻度16與下面直尺對應的刻度是()A.19.4 B.19.5 C.19.6 D.19.7二、填空題(每題4分,共24分)13.如圖,AB是⊙O的直徑,AB=6,點C在⊙O上,∠CAB=30°,D為的中點,P是直徑AB上一動點,則PC+PD的最小值為_____.14.已知線段a、b、c,其中c是a、b的比例中項,若a=2cm,b=8cm,則線段c=_____cm.15.在正方形ABCD中,對角線AC、BD相交于點O.如果AC=3,那么正方形ABCD的面積是__________.16.若函數為關于的二次函數,則的值為__________.17.某種傳染病,若有一人感染,經過兩輪傳染后將共有49人感染.設這種傳染病每輪傳染中平均一個人傳染了x個人,列出方程為______.18.二次函數的圖象與軸只有一個公共點,則的值為________.三、解答題(共78分)19.(8分)超速行駛被稱為“馬路第一殺手”,為了讓駕駛員自覺遵守交通規則,市公路檢測中在一事故多發地段安裝了一個測速儀器,如圖所示,已知檢測點A設在距離公路BC20米處,∠B=45°,∠C=30°,現測得一輛汽車從B處行駛到C處所用時間為2.7秒.(1)求B,C之間的距離(結果保留根號);(2)如果此地限速為80km/h,那么這輛汽車是否超速?請說明理由.(參考數據:1.7,≈1.4)20.(8分)下表是某地連續5天的天氣情況(單位:):日期1月1日1月2日1月3日1月4日1月5日最高氣溫57684最低氣溫-20-213(1)1月1日當天的日溫差為______(2)利用方差判斷該地這5天的日最高氣溫波動大還是日最低氣溫波動大.21.(8分)九年級(1)班的小華和小紅兩名學生10次數學測試成績如下表(表I)所示:小花708090807090801006080小紅908010060908090606090現根據上表數據進行統計得到下表(表Ⅱ):姓名平均成績中位數眾數小華80小紅8090(1)填空:根據表I的數據完成表Ⅱ中所缺的數據;(2)老師計算了小紅的方差請你計算小華的方差并說明哪名學生的成績較為穩定.22.(10分)如圖,在平行四邊形ABCD中,AB<BC.(1)利用尺規作圖,在BC邊上確定點E,使點E到邊AB,AD的距離相等(不寫作法,保留作圖痕跡);(2)若BC=8,CD=5,則CE=.23.(10分)已知:如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過點D作DE⊥AC于點E.(1)求證:DE是⊙O的切線.(2)若⊙O的半徑為3cm,∠C=30°,求圖中陰影部分的面積.24.(10分)計算:(1);(2)解方程25.(12分)如圖,Rt△FHG中,H=90°,FH∥x軸,,則稱Rt△FHG為準黃金直角三角形(G在F的右上方).已知二次函數的圖像與x軸交于A、B兩點,與y軸交于點E(0,),頂點為C(1,),點D為二次函數圖像的頂點.(1)求二次函數y1的函數關系式;(2)若準黃金直角三角形的頂點F與點A重合、G落在二次函數y1的圖像上,求點G的坐標及△FHG的面積;(3)設一次函數y=mx+m與函數y1、y2的圖像對稱軸右側曲線分別交于點P、Q.且P、Q兩點分別與準黃金直角三角形的頂點F、G重合,求m的值并判斷以C、D、Q、P為頂點的四邊形形狀,請說明理由.26.如圖,AC是⊙O的直徑,PA切⊙O于點A,PB切⊙O于點B,且∠APB=60°.(1)求∠BAC的度數;(2)若PA=,求點O到弦AB的距離.

參考答案一、選擇題(每題4分,共48分)1、C【分析】把各個選項依據比例的基本性質,兩內項之積等于兩外項之積,已知的比例式可以轉化為等積式2x=3y,即可判斷.【詳解】A.變成等積式是:xy=6,故錯誤;B.變成等積式是:3x+3y=4y,即3x=y,故錯誤;C.變成等積式是:2x=3y,故正確;D.變成等積式是:5x+5y=3x,即2x+5y=0,故錯誤.故選C.【點睛】本題考查了判斷兩個比例式是否能夠互化的方法,即轉化為等積式,判斷是否相同即可.2、B【分析】一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數的值.即用這個數代替未知數所得式子仍然成立.【詳解】解:因為x=-3是原方程的根,所以將x=-3代入原方程,即(-3)2+3k?6=0成立,解得k=-1.故選:B.【點睛】本題考查的是一元二次方程的根即方程的解的定義,解題的關鍵是把方程的解代入進行求解.3、C【解析】由矩形的性質得出AB=CD,AB∥CD,∠ABC=∠BCD=90°,由ASA證明△BEF≌△CDF,得出BE=CD=AB,則AE=2AB=2CD,再根據AOECOD,面積比等于相似比的平方即可。【詳解】∵四邊形ABCD是矩形,

∴AB=CD,AB∥CD,∠ABC=∠BCD=90°,

∴∠EBF=90°,

∵F為BC的中點,

∴BF=CF,

在△BEF和△CDF中,,

∴△BEF≌△CDF(ASA),

∴BE=CD=AB,

∴AE=2AB=2CD,

∵AB∥CD,∴AOECOD,∴=4:1∵∴=8故選:C.【點睛】本題考查了矩形的性質、全等三角形的判定與性質、相似三角形的判定與性質;熟練掌握有關的性質與判定是解決問題的關鍵.4、A【分析】根據一次函數圖象的增減性判斷即可.【詳解】∵k=﹣3<0,∴y值隨x值的增大而減小,又∵x1<x1,∴y1>y1.故選:A.【點睛】本題考查一次函數圖象的增減性,關鍵在于先判斷k值再根據圖象的增減性判斷.5、D【分析】先根據垂直平分線的特點得出∠B=∠DAB,∠C=∠EAC,然后根據△ABC的內角和及∠DAE的大小,可推導出∠DAB+∠EAC的大小,從而得出∠BAC的大小.【詳解】如下圖∵DM是線段AB的垂直平分線,∴DA=DB,∴∠B=∠DAB,同理∠C=∠EAC,∵∠B+∠DAB+∠C+∠EAC+∠DAE=180°,∵∠DAE=20°∴∠DAB+∠EAC=80°,∴∠BAC=100°,故選:D.【點睛】本題考查垂直平分線的性質,解題關鍵是利用整體思想,得出∠DAB+∠EAC=80°.6、B【分析】根據銳角三角函數值,即可求出∠B.【詳解】解:∵在Rt△ABC中,cosB=,∴∠B=60°故選:B.【點睛】此題考查的是根據銳角三角函數值求角的度數,掌握特殊角的銳角三角函數值是解決此題的關鍵.7、C【解析】根據二次函數的對稱軸方程計算.【詳解】解:∵二次函數y=x2+(t﹣1)x+2t﹣1的對稱軸是y軸,∴﹣=0,解得,t=1,故選:C.【點睛】本題考查二次函數對稱軸性質,熟練掌握對稱軸的公式是解題的關鍵.8、B【詳解】由格點可得∠ABC所在的直角三角形的兩條直角邊為2,4,∴斜邊為.∴cos∠ABC=.故選B.9、C【詳解】由草坪面積為100m2,可知x、y存在關系y=,然后根據兩邊長均不小于5m,可得x≥5、y≥5,則x≤20,故選:C.10、B【解析】根據事件發生的可能性大小判斷相應事件的類型.【詳解】A.任意畫一個三角形,其內角和為180°是必然事件;B.經過有交通信號的路口,遇到紅燈是隨機事件;C.太陽從東方升起是必然事件;D.任意一個五邊形的外角和等于540°是不可能事件.故選B.【點睛】本題考查了必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發生的事件.不可能事件是指在一定條件下,一定不發生的事件,不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.11、D【分析】利用樹狀圖求出可能結果即可解答.【詳解】解:畫樹狀圖為:共有12種等可能的結果數,其中所取兩點之間的距離為2的結果數為4,所取兩點之間的距離為2的概率==.故選D.【點睛】本題考查畫樹狀圖或列表法求概率,掌握畫樹狀圖的方法是解題關鍵.12、C【分析】根據兩把直尺在刻度10處是對齊的及上面直尺的刻度11與下面直尺對應的刻度是11.6,得出上面直尺的10個小刻度,對應下面直尺的16個小刻度,進而判斷出上面直尺的刻度16與下面直尺對應的刻度即可.【詳解】解:由于兩把直尺在刻度10處是對齊的,觀察圖可知上面直尺的刻度11與下面直尺對應的刻度是11.6,即上面直尺的10個小刻度,對應下面直尺的16個小刻度,且上面的直尺在刻度15處與下面的直尺在刻度18處也剛好對齊,因此上面直尺的刻度16與下面直尺對應的刻度是18+1.6=19.6,故答案為C【點睛】本題考查了學生對圖形的觀察能力,通過圖形得出上面直尺的10個小刻度,對應下面直尺的16個小刻度是解題的關鍵.二、填空題(每題4分,共24分)13、3【分析】作出D關于AB的對稱點D',則PC+PD的最小值就是CD'的長度.在△COD'中根據邊角關系即可求解.【詳解】作出D關于AB的對稱點D',連接OC,OD',CD'.又∵點C在⊙O上,∠CAB=30°,D為的中點,∴∠BAD'∠CAB=15°,∴∠CAD'=45°,∴∠COD'=90°.∴△COD'是等腰直角三角形.∵OC=OD'AB=3,∴CD'=3.故答案為:3.【點睛】本題考查了圓周角定理以及路程的和最小的問題,正確作出輔助線是解答本題的關鍵.14、4【分析】根據比例中項的定義,列出比例式即可求解.【詳解】∵線段c是a、b的比例中項,線段a=2cm,b=8cm,∴=,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍去),∴線段c=4cm.故答案為:4【點睛】本題考查了比例中項的概念:當兩個比例內項相同時,就叫比例中項.這里注意線段不能是負數.15、1【分析】由正方形的面積公式可求解.【詳解】解:∵AC=3,

∴正方形ABCD的面積=3×3×=1,

故答案為:1.【點睛】本題考查了正方形的性質,熟練運用正方形的性質是解題的關鍵.16、2【分析】根據二次函數的定義,列出關于m的方程和不等式,即可求解.【詳解】∵函數為關于的二次函數,∴且,∴m=2.故答案是:2.【點睛】本題主要考查二次函數的定義,列出關于m的方程和不等式,是解題的關鍵.17、x(x+1)+x+1=1.【分析】設每輪傳染中平均一人傳染x人,那么經過第一輪傳染后有x人被感染,那么經過兩輪傳染后有x(x+1)+x+1人感染,列出方程即可.【詳解】解:設每輪傳染中平均一人傳染x人,則第一輪后有x+1人感染,第二輪后有x(x+1)+x+1人感染,由題意得:x(x+1)+x+1=1.故答案為:x(x+1)+x+1=1.【點睛】本題主要考查了由實際問題抽象出一元二次方程,掌握一元二次方程是解題的關鍵.18、【解析】根據△=b2-4ac=0時,拋物線與x軸有1個交點得到△=(-2)2-4m=0,然后解關于m的方程即可.【詳解】根據題意得△=(-2)2-4m=0,

解得m=1.

故答案是:1.【點睛】考查了拋物線與x軸的交點:對于二次函數y=ax2+bx+c(a,b,c是常數,a≠0),△=b2-4ac決定拋物線與x軸的交點個數:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.三、解答題(共78分)19、(1)(20+20)m;(2)這輛汽車沒超速,見解析【分析】(1)如圖作AD⊥BC于D.則AD=20m,求出CD、BD即可解決問題;(2)求出汽車的速度和此地限速為80km/h比較大小,即可解決問題,注意統一單位.【詳解】(1)如圖作AD⊥BC于D.則AD=10m,在Rt△ABD中,∵∠B=45°,∴BD=AD=10m,在Rt△ACD中,∵∠C=30°,∴tan30°,∴CDAD=20m,∴BC=BD+DC=(20+20)m.(2)結論:這輛汽車沒超速.理由如下:∵BC=BD+DC=(20+20)BC≈54m,∴汽車速度20m/s=72km/h.∵72km/h<80km/h,∴這輛汽車沒超速.【點睛】本題考查了解直角三角形的應用,銳角三角函數、速度、時間、路程之間的關系等知識,解答本題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考常考題型.20、(1)7;(2)日最低氣溫波動大.【分析】(1)根據溫差=最高溫度-最低溫度,再根據有理數的減法進行計算即可得出答案(2)利用方差公式直接求出最高氣溫與最低氣溫的方差,再進行比較即可.【詳解】解:(1)5-(-2)=5+2=7所以1月1日當天的日溫差為7(2)最高氣溫的平均數:最高氣溫的方差為:同理得出,最低氣溫的平均數:最低氣溫的方差為:∵∴日最低氣溫波動大.【點睛】本題考查的知識點是求數據的平均數與方差,熟記方差公式是解題的關鍵.21、(1)見解析;(2)小華的方差是120,小華成績穩定.【分析】(1)由表格可知,小華10次數學測試中,得60分的1次,得70分的2次,得1分的4次,得90分的2次,得100分的1次,根據加權平均數的公式計算小華的平均成績,將小紅10次數學測試的成績從小到大排列,可求出中位數,根據李華的10個數據里的各數出現的次數,可求出測試成績的眾數;

(2)先根據方差公式分別求出兩位同學10次數學測試成績的方差,再比較大小,其中較小者成績較為穩定.【詳解】(1)解:(1)小華的平均成績為:(60×1+70×2+1×4+90×2+100×1)=1,

將小紅10次數學測試的成績從小到大排列為:60,60,60,1,1,90,90,90,90,100,第五個與第六個數據為1,90,所以中位數為=85,

小華的10個數據里1分出現了4次,次數最多,所以測試成績的眾數為1.

填表如下:姓

名平均成績中位數眾數小華11小紅85(2)小華同學成績的方差:S2=[102+02+102+02+102+102+02+202+202+02]

=(100+100+100+100+400+400)

=120,

小紅同學成績的方差為200,

∵120<200,

∴小華同學的成績較為穩定.【點睛】本題考查平均數、中位數、眾數、方差的意義.一組數據中出現次數最多的數據叫做眾數.將一組數據按照從小到大(或從大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數;如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.方差是用來衡量一組數據波動大小的量,方差越大,表明這組數據偏離平均數越大,即波動越大,數據越不穩定;反之,方差越小,表明這組數據分布比較集中,各數據偏離平均數越小,即波動越小,數據越穩定.22、(1)見解析;(2)1.【分析】根據角平分線上的點到角的兩邊距離相等知作出∠A的平分線即可;根據平行四邊形的性質可知AB=CD=5,AD∥BC,再根據角平分線的性質和平行線的性質得到∠BAE=∠BEA,再根據等腰三角形的性質和線段的和差關系即可求解.【詳解】(1)如圖所示:E點即為所求.(2)∵四邊形ABCD是平行四邊形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分線,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=1.考點:作圖—復雜作圖;平行四邊形的性質23、(1)見解析;(1)(3π﹣)cm1【分析】(1)由等腰三角形的性質證出∠ODB=∠C.得出OD∥AC.由已知條件證出DE⊥OD,即可得出結論;(1)由垂徑定理求出OF,由勾股定理得出DF,求出BD,得出△BOD的面積,再求出扇形BOD的面積,即可得出結果.【詳解】(1)連接OD,如圖1所示:∵OD=OB,∴∠B=∠ODB.∵AB=AC,∴∠B=∠C.∴∠ODB=∠C.∴OD∥AC.∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切線.(1)過O作OF⊥BD于F,如圖1所示:∵∠C=30°,AB=AC,OB=OD,∴∠OBD=∠ODB=∠C=30°,∴∠BOD=110°,在Rt△DFO中,∠FDO=30°,∴OF=OD=cm,∴DF==cm,∴BD=1DF=3cm,∴S△BOD=×BD×OF=×3×=cm1,S扇形BOD==3πcm1,∴S陰=S扇形BOD﹣S△BOD==(3π﹣)cm1.【點睛】本題考查了切線的判定、等腰三角形的性質、平行線的判定與性質、勾股定理、三角形和扇形面積的計算等知識;熟練掌握切線的判定,由垂徑定理和勾股定理求出OF和DF是解決問題(1)的關鍵.24、(1);(2)【分析】(1)先把特殊角的三角函數值代入原式,然后再計算;

(2)利用配方法求解即可.【詳解】解:(1)原式(2)∵,∴,即,則,∴.【點睛】本題考查了特殊角的三角函數值以及用因式分解法解方程.記住特殊角的三角函數值是解題關鍵,25、(1)y=(x-1)2-4;(2)點G坐標為(3.6,2.76),S△FHG=6.348;(3)m=0.6,四邊形CDPQ為平行四邊形,理由見解析.【分析】(1)利用頂點式求解即可,(2)將G點代入函數解析式求出坐標,利用坐標的特點即可求出面積,(3)作出圖象,延長QH,交x軸于點R,由平行線的性質得證明△AQR∽△PHQ,設Q[n,0.6(n+1)],代入y=mx+m中,即可證明四邊形CDPQ為平行四邊形.【詳解】(1)設二次函數的解析式是y=a(x-h)2+k,(a≠0),由題可知該拋物線與y軸交于點E(0,),頂點為C(1,),∴y=a(x-1)2-4,代入E(0,),解得a=1,()(2)設G[a,0.6(a+1)],代入函數關系式,得,,解得a1=3.6,a2=-1(舍去),所以點G坐標為(3.6,2.76).S△FHG=6.348(3)y=mx+m=m(x+1),當x=-1時,y=0,所以直線y=mx+m延長QH,交x軸于點R,由平行線的性質得,QR⊥x軸.因為FH∥x軸,所以∠QPH=∠QAR,因為∠PHQ=∠ARQ=90°,所以△AQR∽△PQH,所以=0.6,設Q[n,0.6(n+1)],代入y=mx+m

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論