2025屆廣東省深圳市大鵬新區九上數學期末聯考試題含解析_第1頁
2025屆廣東省深圳市大鵬新區九上數學期末聯考試題含解析_第2頁
2025屆廣東省深圳市大鵬新區九上數學期末聯考試題含解析_第3頁
2025屆廣東省深圳市大鵬新區九上數學期末聯考試題含解析_第4頁
2025屆廣東省深圳市大鵬新區九上數學期末聯考試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆廣東省深圳市大鵬新區九上數學期末聯考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.下列說法正確的是()A.25人中至少有3人的出生月份相同B.任意拋擲一枚均勻的1元硬幣,若上一次正面朝上,則下一次一定反面朝上C.天氣預報說明天降雨的概率為10%,則明天一定是晴天D.任意拋擲一枚均勻的骰子,擲出的點數小于3的概率是2.如圖,點A,B的坐標分別為(0,8),(10,0),動點C,D分別在OA,OB上且CD=8,以CD為直徑作⊙P交AB于點E,F.動點C從點O向終點A的運動過程中,線段EF長的變化情況為()A.一直不變 B.一直變大C.先變小再變大 D.先變大再變小3.下列事件中是必然發生的事件是()A.投擲一枚質地均勻的骰子,擲得的點數是奇數;B.某種彩票中獎率是1%,則買這種彩票100張一定會中獎;C.擲一枚硬幣,正面朝上;D.任意畫一個三角形,其內角和是180°.4.下列兩個圖形:①兩個等腰三角形;②兩個直角三角形;③兩個正方形;④兩個矩形;⑤兩個菱形;⑥兩個正五邊形.其中一定相似的有()A.2組B.3組C.4組D.5組5.下列各式由左到右的變形中,屬于分解因式的是()A. B.C. D.6.若點關于原點對稱點的坐標是,則的值為()A. B. C. D.7.如圖,一艘快艇從O港出發,向東北方向行駛到A處,然后向西行駛到B處,再向東南方向行駛,共經過1小時到O港,已知快艇的速度是60km/h,則A,B之間的距離是()A. B. C. D.8.在下列四個圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.9.下列運算正確的是()A.a?a1=a B.(2a)3=6a3 C.a6÷a2=a3 D.2a2﹣a2=a210.一個不透明的袋子中有3個白球,4個黃球和5個紅球,這些球除顏色不同外,其他完全相同.從袋子中隨機摸出一個球,則它是黃球的概率是()A. B. C. D.11.己知⊙的半徑是一元二次方程的一個根,圓心到直線的距離.則直線與⊙的位置關系是A.相離 B.相切 C.相交 D.無法判斷12.圖1是一個地鐵站入口的雙翼閘機.如圖2,它的雙翼展開時,雙翼邊緣的端點A與B之間的距離為10cm,雙翼的邊緣AC=BD=54cm,且與閘機側立面夾角∠PCA=∠BDQ=30°.當雙翼收起時,可以通過閘機的物體的最大寬度為()A.(54+10)cm B.(54+10)cm C.64cm D.54cm二、填空題(每題4分,共24分)13.如圖,PA,PB是⊙O的切線,切點分別是點A和B,AC是⊙O的直徑.若∠P=60°,PA=6,則BC的長為__________.14.一元二次方程的根的判別式的值為____.15.已知是關于的一元二次方程的兩個實數根,則=____.16.點是二次函數圖像上一點,則的值為__________17.在一個不透明的盒子中裝有12個白球,若干個黃球,它們除顏色不同外,其余均相同,若從中隨機摸出一個球是白球的概率是,則黃球個數為__________.18.已知是,則的值等于____________.三、解答題(共78分)19.(8分)為響應國家全民閱讀的號召,某社區鼓勵居民到社區閱覽室借閱讀書,并統計每年的借閱人數和圖書借閱總量(單位:本),該閱覽室在2014年圖書借閱總量是7500本,2016年圖書借閱總量是10800本.(1)求該社區的圖書借閱總量從2014年至2016年的年平均增長率;(2)已知2016年該社區居民借閱圖書人數有1350人,預計2017年達到1440人,如果2016年至2017年圖書借閱總量的增長率不低于2014年至2016年的年平均增長率,那么2017年的人均借閱量比2016年增長a%,求a的值至少是多少?20.(8分)已知:如圖,AE∥CF,AB=CD,點B、E、F、D在同一直線上,∠A=∠C.求證:(1)AB∥CD;(2)BF=DE.21.(8分)已知二次函數的圖象經過點.(1)當時,若點在該二次函數的圖象上,求該二次函數的表達式;(2)已知點,在該二次函數的圖象上,求的取值范圍;(3)當時,若該二次函數的圖象與直線交于點,,且,求的值.22.(10分)己知函數(是常數)(1)當時,該函數圖像與直線有幾個公共點?請說明理由;(2)若函數圖像與軸只有一公共點,求的值.23.(10分)如圖,?ABCD中,點E,F分別是BC和AD邊上的點,AE垂直平分BF,交BF于點P,連接EF,PD.(1)求證:平行四邊形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.24.(10分)如圖,在中,,,以為頂點在邊上方作菱形,使點分別在邊上,另兩邊分別交于點,且點恰好平分.(1)求證:;(2)請說明:.25.(12分)如圖1,在Rt△ABC中,∠B=90°,BC=2AB=8,點D,E分別是邊BC,AC的中點,連接DE,將△EDC繞點C按順時針方向旋轉,記旋轉角為α.(1)問題發現①當時,;②當時,(2)拓展探究試判斷:當0°≤α<360°時,的大小有無變化?請僅就圖2的情況給出證明.(3)問題解決當△EDC旋轉至A、D、E三點共線時,直接寫出線段BD的長.26.在等邊中,點為上一點,連接,直線與分別相交于點,且.(1)如圖(1),寫出圖中所有與相似的三角形,并選擇其中的一對給予證明;(2)若直線向右平移到圖(2)、圖(3)的位置時,其他條件不變,(1)中的結論是否仍然成立?若成立請寫出來(不證明),若不成立,請說明理由;(3)探究:如圖(1),當滿足什么條件時(其他條件不變),?請寫出探究結果,并說明理由(說明:結論中不得含有未標識的字母).

參考答案一、選擇題(每題4分,共48分)1、A【分析】根據概率的意義對各選項分析判斷后利用排除法求解.【詳解】A、25人中至少有3人的出生月份相同,原說法正確,故這個選項符合題意;B、任意拋擲一枚均勻的1元硬幣,若上一次正面朝上,則下一次可能正面朝上,可能反面朝上,原說法錯誤,故這個選項不符合題意;C、天氣預報說明天的降水概率為10%,則明天不一定是晴天,原說法錯誤,故這個選項不符合題意;D、任意拋擲一枚均勻的骰子,擲出的點數小于3有2種可能,故概率是,原說法錯誤,故這個選項不符合題意;故選:A.【點睛】本題考查了概率的意義,概率是反映事件發生機會的大小的概念,只是表示發生的機會的大小,機會大也不一定發生,機會小也有可能發生.2、D【解析】如圖,連接OP,PF,作PH⊥AB于H.點P的運動軌跡是以O為圓心、OP為半徑的⊙O,易知EF=2FH=2,觀察圖形可知PH的值由大變小再變大,推出EF的值由小變大再變小.【詳解】如圖,連接OP,PF,作PH⊥AB于H.∵CD=8,∠COD=90°,∴OP=CD=4,∴點P的運動軌跡是以O為圓心OP為半徑的⊙O,∵PH⊥EF,∴EH=FH,∴EF=2FH=2,觀察圖形可知PH的值由大變小再變大,∴EF的值由小變大再變小,故選:D.【點睛】此題主要考查圓與幾何綜合,解題的關鍵是熟知勾股定理及直角坐標系的特點.3、D【分析】直接利用隨機事件以及概率的意義分別分析得出答案.【詳解】解:A、投擲一枚質地均勻的骰子,擲得的點數是奇數,是隨機事件,不合題意;B、某種彩票中獎率是1%,則買這種彩票100張有可能會中獎,不合題意;C、擲一枚硬幣,正面朝上,是隨機事件,不合題意;D、任意畫一個三角形,其內角和是180°,是必然事件,符合題意.故選D.【點睛】本題主要考查了概率的意義以及隨機事件,解決本題的關鍵是要正確區分各事件的意義.4、A【解析】試題解析:①不相似,因為沒有指明相等的角或成比例的邊;②不相似,因為只有一對角相等,不符合相似三角形的判定;③相似,因為其四個角均相等,四條邊都相等,符合相似的條件;④不相似,雖然其四個角均相等,因為沒有指明邊的情況,不符合相似的條件;⑤不相似,因為菱形的角不一定對應相等,不符合相似的條件;⑥相似,因為兩正五邊形的角相等,對應邊成比例,符合相似的條件;所以正確的有③⑥.故選A.5、C【解析】根據題中“屬于分解因式的是”可知,本題考查多項式的因式分解的判斷,根據因式分解的概念,運用因式分解是把多項式分解成若干個整式相乘的形式,進行分析判斷.【詳解】A.屬于整式乘法的變形.B.不符合因式分解概念中若干個整式相乘的形式.C.運用提取公因式法,把多項式分解成了5x與(2x-1)兩個整式相乘的形式.D.不符合因式分解概念中若干個整式相乘的形式.故應選C【點睛】本題解題關鍵:理解因式分解的概念是把多項式分解成若干個整式相乘的形式,注意的是相乘的形式.6、A【分析】根據平面內關于原點對稱的點,橫坐標與縱坐標都互為相反數得出關于,的方程組,解之即可.【詳解】解:點,關于原點對稱,,解得:.故選:A.【點睛】此題主要考查了關于原點對稱點的性質,正確記憶橫縱坐標的關系是解題關鍵.7、B【分析】根據∠AOD=45°,∠BOD=45°,AB∥x軸,△AOB為等腰直角三角形,OA=OB,利用三角函數解答即可.【詳解】∵∠AOD=45°,∠BOD=45°,∴∠AOD=90°,∵AB∥x軸,∴∠BAO=∠AOC=45°,∠ABO=∠BOD=45°,∴△AOB為等腰直角三角形,OA=OB,∵OB+OA+AB=60km,∵OB=OA=AB,∴AB=,故選:B.【點睛】本題考查了等腰直角三角形,解決本題的關鍵是熟悉等腰直角三角形的性質.8、A【解析】根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、是中心對稱圖形,也是軸對稱圖形,符合題意;B、是軸對稱圖形,不是中心對稱圖形,不符合題意;C、是軸對稱圖形,不是中心對稱圖形,不符合題意;D、不是軸對稱圖形,是中心對稱圖形,不符合題意.故選A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.9、D【分析】根據同底數冪的乘法法則,積的乘方運算法則,同底數冪的除法法則以及合并同類項法則逐一判斷即可.【詳解】A.a?a1=a2,故本選項不合題意;B.(2a)3=8a3,故本選項不合題意;C.a6÷a2=a4,故本選項不合題意;D.2a2﹣a2=a2,正確,故本選項符合題意.故選:D.【點睛】本題考查的是冪的運算,比較簡單,需要牢記冪的運算公式.10、B【分析】利用概率公式直接計算即可.【詳解】解:根據題意可得:袋子中有有3個白球,4個黃球和5個紅球,共12個,從袋子中隨機摸出一個球,它是黃色球的概率.故選B.【點睛】本題考查概率的計算,掌握公式正確計算是本題的解題關鍵.11、A【分析】在判斷直線與圓的位置關系時,通常要得到圓心到直線的距離,然后再利用d與r的大小關系進行判斷;在直線與圓的問題中,充分利用構造的直角三角形來解決問題,直線與圓的位置關系:①當d>r時,直線與圓相離;②當d=r時,直線與圓相切;③當d<r時,直線與圓相交.【詳解】∵的解為x=4或x=-1,∴r=4,∵4<6,即r<d,∴直線和⊙O的位置關系是相離.故選A.【點睛】本題主要考查了直線與圓的位置關系,一元二次方程的定義及一般形式,掌握直線與圓的位置關系,一元二次方程的定義及一般形式是解題的關鍵.12、C【分析】過A作AE⊥CP于E,過B作BF⊥DQ于F,則可得AE和BF的長,依據端點A與B之間的距離為10cm,即可得到可以通過閘機的物體的最大寬度.【詳解】如圖所示,過A作AE⊥CP于E,過B作BF⊥DQ于F,則Rt△ACE中,AE=AC=×54=27(cm),同理可得,BF=27cm,又∵點A與B之間的距離為10cm,∴通過閘機的物體的最大寬度為27+10+27=64(cm),故選C.【點睛】本題主要考查了特殊角的三角函數值,特殊角的三角函數值應用廣泛,一是它可以當作數進行運算,二是具有三角函數的特點,在解直角三角形中應用較多.二、填空題(每題4分,共24分)13、【分析】連接AB,根據PA,PB是⊙O的切線可得PA=PB,從而得出AB=6,然后利用∠P=60°得出∠CAB為30°,最后根據直角三角形中30°角的正切值進一步計算即可.【詳解】如圖,連接AB,∵PA,PB是⊙O的切線,∴PA=PB,∵∠P=60°,∴△ABP為等邊三角形,∴AB=6,∵∠P=60°,∴∠CAB=30°,易得△ABC為直角三角形,∴,∴BC=AB×=,故答案為:.【點睛】本題主要考查了圓中切線長與三角函數的綜合運用,熟練掌握相關概念是解題關鍵.14、1.【解析】直接利用根的判別式△=b2-4ac求出答案.【詳解】一元二次方程x2+3x=0根的判別式的值是:△=32-4×1×0=1.故答案為1.【點睛】此題主要考查了根的判別式,正確記憶公式是解題關鍵.15、-3【分析】欲求的值,根據一元二次方程根與系數的關系,求得兩根的和與積,代入數值計算即可.【詳解】解:根據題意x1+x2=2,x1?x2=-4,===-3.故答案為:-3.【點睛】本題考查了一元二次方程根與系數的關系,將根與系數的關系與代數式變形相結合解題是經常使用的一種解題方法.16、1【分析】把點代入即可求得值,將變形,代入即可.【詳解】解:∵點是二次函數圖像上,

∴則.∴

故答案為:1.【點睛】本題考查了二次函數圖象上點的坐標特征,根據點坐標求待定系數是解題的關鍵.17、24【分析】根據概率公式,求出白球和黃球總數,再減去白球的個數,即可求解.【詳解】12÷=36(個),36-12=24(個),答:黃球個數為24個.故答案是:24.【點睛】本題主要考查概率公式,掌握概率公式及其變形公式,是解題的關鍵.18、【分析】已知等式左邊通分并利用同分母分式的減法法則計算,整理得到a-b與ab的關系,代入原式計算即可求出值.【詳解】解:∵,∴則,

故對答案為:.【點睛】此題考查了分式的加減法,以及分式的值,熟練掌握運算法則是解本題的關鍵.三、解答題(共78分)19、(1)20%;(2)12.1.【解析】試題分析:(1)經過兩次增長,求年平均增長率的問題,應該明確原來的基數,增長后的結果.設這兩年的年平均增長率為x,則經過兩次增長以后圖書館有書7100(1+x)2本,即可列方程求解;(2)先求出2017年圖書借閱總量的最小值,再求出2016年的人均借閱量,2017年的人均借閱量,進一步求得a的值至少是多少.試題解析:(1)設該社區的圖書借閱總量從2014年至2016年的年平均增長率為x,根據題意得7100(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去).答:該社區的圖書借閱總量從2014年至2016年的年平均增長率為20%;(2)10800(1+0.2)=12960(本)10800÷1310=8(本)12960÷1440=9(本)(9﹣8)÷8×100%=12.1%.故a的值至少是12.1.考點:一元二次方程的應用;一元一次不等式的應用;最值問題;增長率問題.20、(1)見解析;(2)見解析.【解析】(1)由△ABE≌△CDF可得∠B=∠D,就可得到AB∥CD;(2)要證BF=DE,只需證到△ABE≌△CDF即可.【詳解】解:(1)∵AB∥CD,∴∠B=∠D.在△ABE和△CDF中,,∴△ABE≌△CDF(ASA),∴∠B=∠D,∴AB∥CD;(2)∵△ABE≌△CDF,∴BE=DF.∴BE+EF=DF+EF,∴BF=DE.【點睛】此題考查全等三角形的判定與性質,解題關鍵在于掌握判定定理.21、(1);(2);(3)或2.【分析】(1)將和點,代入解析式中,即可求出該二次函數的表達式;(2)根據點M和點N的坐標即可求出該拋物線的對稱軸,再根據二次函數的開口方向和二次函數的增加性,即可列出關于t的不等式,從而求出的取值范圍;(3)將和點代入解析式中,可得,然后將二次函數的解析式和一次函數的解析式聯立,即可求出點P、Q的坐標,最后利用平面直角坐標系中任意兩點之間的距離公式即可求出的值.【詳解】解:(1)∵,∴二次函數的表達式為.∵點,在二次函數的圖象上,∴.解得.∴該拋物線的函數表達式為.(2)∵點,在該二次函數的圖象上,∴該二次函數的對稱軸是直線.∵拋物線開口向上,,,在該二次函數圖象上,且,∴點,分別落在點的左側和右側,∴.解得的取值范圍是.(3)當時,的圖象經過點,∴,即.∴二次函數表達式為.根據二次函數的圖象與直線交于點,由,解得,.∴點的橫坐標分別是1,.不妨設點的橫坐標是1,則點與點重合,即的坐標是,如下圖所示∴點的坐標是,即的坐標是.∵,∴根據平面直角坐標系中任意兩點之間的距離公式,可得.解得或2.【點睛】此題考查的是二次函數與一次函數的綜合大題,掌握用待定系數法求二次函數的解析式、二次函數的增減性、求二次函數與一次函數的交點坐標和平面直角坐標系中任意兩點之間的距離公式是解決此題的關鍵.22、(1)函數圖像與直線有兩個不同的公共點;(2)或.【分析】(1)首先聯立二次函數和一次函數得出一元二次方程,然后由根的判別式判定即可;(2)分情況討論:當和時,與軸有一個公共點求解即可.【詳解】(1)當時,∴∴∵∴方程有兩個不相等的實數根,函數圖像與直線有兩個不同的公共點(2)①當時,函數與軸有一個公共點②當時,函數是二次函數由題可得,綜上可知:或.【點睛】此題主要考查二次函數與一次函數的綜合運用,熟練掌握,即可解題.23、(1)詳見解析;(2)tan∠ADP=35【解析】(1)根據線段垂直平分線的性質和平行四邊形的性質即可得到結論;(2)作PH⊥AD于H,根據四邊形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,從而得到PH=3,DH=5,然后利用銳角三角函數的定義求解即可.【詳解】(1)證明:∵AE垂直平分BF,∴AB=AF,∴∠BAE=∠FAE,∵四邊形ABCD是平行四邊形,∴AD∥BC.∴∠FAE=∠AEB,∴∠AEB=∠BAE,∴AB=BE,∴AF=BE.∵AF∥BC,∴四邊形ABEF是平行四邊形.∵AB=BE,∴四邊形ABEF是菱形;(2)解:作PH⊥AD于H,∵四邊形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,∴AP=12AB=2∴PH=3,DH=5,∴tan∠ADP=PHDH=3【點睛】本題考查了菱形的判定及平行四邊形的性質,解題的關鍵是牢記菱形的幾個判定定理,難度不大.24、(1)證明見解析;(2)證明見解析.【分析】(1)根據四邊形是菱形,得到,又推出,又點恰好平分,三線合一,(2)可證,再證,從而求得【詳解】證明:(1)連接,∵,,∴.∵四邊形是菱形,∴,,∴是等邊三角形.∵是的中點,∴(2)∵,∴.∴.∵,∴.∴.∴.∴.∴.∴.∴.【點睛】本題考查了菱形的性質、三線合一以及相似三角形的性質.25、(1)①,②.(2)無變化;理由參見解析.(3),.【分析】(1)①當α=0°時,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根據點D、E分別是邊BC、AC的中點,分別求出AE、BD的大小,即可求出的值是多少.②α=180°時,可得AB∥DE,然后根據,求出的值是多少即可.(2)首先判斷出∠ECA=∠DCB,再根據,判斷出△ECA∽△DCB,即可求出的值是多少,進而判斷出的大小沒有變化即可.(3)根據題意,分兩種情況:①點A,D,E所在的直線和BC平行時;②點A,D,E所在的直線和BC相交時;然后分類討論,求出線段BD的長各是多少即可.【詳解】(1)①當α=0°時,∵Rt△ABC中,∠B=90°,∴AC=,∵點D、E分別是邊BC、AC的中點,∴,BD=8÷2=4,∴.②如圖1,,當α=180°時,可得AB∥DE,∵,∴(2)如圖2,,當0°≤α<360°時,的大小沒有變化,∵∠ECD=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論