




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下列事件中為必然事件的是()A.打開電視機,正在播放茂名新聞 B.早晨的太陽從東方升起C.隨機擲一枚硬幣,落地后正面朝上 D.下雨后,天空出現彩虹2.如圖,已知△ABC與△DEF位似,位似中心為點O,且△ABC的面積等于△DEF面積的,則AO:AD的值為()A.2:3 B.2:5 C.4:9 D.4:133.已知、是一元二次方程的兩個實數根,下列結論錯誤的是()A. B. C. D.4.定義:在等腰三角形中,底邊與腰的比叫做頂角的正對,頂角的正對記作,即底邊:腰.如圖,在中,,.則()A. B. C. D.5.若關于x的一元二次方程(k﹣1)x2+2x﹣2=0有兩個不相等的實數根,則k的取值范圍是()A.k> B.k≥ C.k>且k≠1 D.k≥且k≠16.反比例函數在第一象限的圖象如圖所示,則k的值可能是()A.3 B.5 C.6 D.87.方程5x2=6x﹣8化成一元二次方程一般形式后,二次項系數、一次項系數、常數項分別是()A.5、6、﹣8B.5,﹣6,﹣8C.5,﹣6,8D.6,5,﹣88.如圖,反比例函數的圖象經過點A(2,1),若≤1,則x的范圍為()A.≥1 B.≥2 C.<0或≥2 D.<0或0<≤19.拋物線y=2x2﹣3的頂點坐標是()A.(0,﹣3) B.(﹣3,0) C.(﹣,0) D.(0,﹣)10.某班同學畢業時都將自己的照片向全班其他同學各送一張表示留念,全班共送1035張照片,如果全班有x名同學,根據題意,列出方程為()A.x(x+1)=1035 B.x(x-1)=1035 C.x(x+1)=1035 D.x(x-1)=1035二、填空題(每小題3分,共24分)11.已知拋物線與軸交于兩點,若點的坐標為,拋物線的對稱軸為直線,則點的坐標為__________.12.如圖,人字梯,的長都為2米.當時,人字梯頂端高地面的高度是____米(結果精確到.參考依據:,,)13.用配方法解一元二次方程,配方后的方程為,則n的值為______.14.如圖,折疊長方形的一邊AD,使點D落在BC邊的點F處,已知AB=8cm,BC=10cm,則EF=________.15.分式方程的解為______________.16.方程的根是___________.17.在中,,則的面積是__________.18.圓錐的底面半徑是4,母線長是9,則它的側面展開圖的圓心角的度數為______.三、解答題(共66分)19.(10分)如圖,△ABC是等邊三角形,AO⊥BC,垂足為點O,⊙O與AC相切于點D,BE⊥AB交AC的延長線于點E,與⊙O相交于G,F兩點.(1)求證:AB與⊙O相切;(2)若AB=4,求線段GF的長.20.(6分)數學概念若點在的內部,且、和中有兩個角相等,則稱是的“等角點”,特別地,若這三個角都相等,則稱是的“強等角點”.理解概念(1)若點是的等角點,且,則的度數是.(2)已知點在的外部,且與點在的異側,并滿足,作的外接圓,連接,交圓于點.當的邊滿足下面的條件時,求證:是的等角點.(要求:只選擇其中一道題進行證明!)①如圖①,②如圖②,深入思考(3)如圖③,在中,、、均小于,用直尺和圓規作它的強等角點.(不寫作法,保留作圖痕跡)(4)下列關于“等角點”、“強等角點”的說法:①直角三角形的內心是它的等角點;②等腰三角形的內心和外心都是它的等角點;③正三角形的中心是它的強等角點;④若一個三角形存在強等角點,則該點到三角形三個頂點的距離相等;⑤若一個三角形存在強等角點,則該點是三角形內部到三個頂點距離之和最小的點,其中正確的有.(填序號)21.(6分)如圖,點A、B、C在⊙O上,用無刻度的直尺畫圖.(1)在圖①中,畫一個與∠B互補的圓周角;(2)在圖②中,畫一個與∠B互余的圓周角.22.(8分)甲、乙兩名隊員參加射擊訓練,成績分別被制成下列兩個統計圖:根據以上信息,整理分析數據如下:平均成績/環中位數/環眾數/環方差甲乙(1)寫出表格中的值:(2)分別運用表中的四個統計量,簡要分析這兩名隊員的射擊訓練成績.若選派其中一名參賽,你認為應選哪名隊員?23.(8分)在一個不透明的布袋里裝有4個標有1,2,3,4的小球,它們的形狀、大小、質地完全相同,小李從布袋里隨機取出一個小球,記下數字為x,小張在剩下的3個小球中隨機取出一個小球,記下數字為y,這樣確定了點Q的坐標(x,y).(1)畫樹狀圖或列表,寫出點Q所有可能的坐標;(2)求點Q(x,y)在函數y=﹣x+5圖象上的概率.24.(8分)如圖,在平面直角坐標系中,直線與軸交于點,與軸交于點且與反比例函數在第一象限的圖象交于點軸于點.根據函數圖象,直接寫出當反比例函數的函數值時,自變量的取值范圍;動點在軸上,軸交反比例函數的圖象于點.若.求點的坐標.25.(10分)解方程:26.(10分)圖中是拋物線拱橋,點P處有一照明燈,水面OA寬4m,以O為原點,OA所在直線為x軸建立平面直角坐標系,已知點P的坐標為(3,).(1)求這條拋物線的解析式;(2)水面上升1m,水面寬是多少?
參考答案一、選擇題(每小題3分,共30分)1、B【解析】分析:根據必然事件、不可能事件、隨機事件的概念可區別各類事件:A、打開電視機,正在播放茂名新聞,可能發生,也可能不發生,是隨機事件,故本選項錯誤;B、早晨的太陽從東方升起,是必然事件,故本選項正確;C、隨機擲一枚硬幣,落地后可能正面朝上,也可能背面朝上,故本選項錯誤;D、下雨后,天空出現彩虹,可能發生,也可能不發生,故本選項錯誤.故選B.2、B【分析】由△ABC經過位似變換得到△DEF,點O是位似中心,根據位似圖形的性質得到AB:DO═2:3,進而得出答案.【詳解】∵△ABC與△DEF位似,位似中心為點O,且△ABC的面積等于△DEF面積的,∴=,AC∥DF,∴==,∴=.故選:B.【點睛】此題考查了位似圖形的性質.注意掌握位似是相似的特殊形式,位似比等于相似比,其對應的面積比等于相似比的平方.3、D【分析】根據一元二次方程的根的判別式、一元二次方程根的定義、一元二次方程根與系數的關系逐一進行分析即可.【詳解】x1、x2是一元二次方程x2-2x=0的兩個實數根,這里a=1,b=-2,c=0,b2-4ac=(-2)2-4×1×0=4>0,所以方程有兩個不相等的實數根,即,故A選項正確,不符合題意;,故B選項正確,不符合題意;,故C選項正確,不符合題意;,故D選項錯誤,符合題意,故選D.【點睛】本題考查了一元二次方程的根的判別式,根的意義,根與系數的關系等,熟練掌握相關知識是解題的關鍵.4、C【分析】證明△ABC是等腰直角三角形即可解決問題.【詳解】解:∵AB=AC,
∴∠B=∠C,
∵∠A=2∠B,
∴∠B=∠C=45°,∠A=90°,
∴在Rt△ABC中,BC==AC,
∴sin∠B?sadA=,故選:C.【點睛】本題考查解直角三角形,等腰直角三角形的判定和性質三角函數等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考常考題型.5、C【詳解】根據題意得k-1≠0且△=22-4(k-1)×(-2)>0,解得:k>且k≠1.故選C【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac,關鍵是熟練掌握:當△>0,方程有兩個不相等的實數根;當△=0,方程有兩個相等的實數根;當△<0,方程沒有實數根.6、B【分析】根據點(1,3)在反比例函數圖象下方,點(3,2)在反比例函數圖象上方可得出k的取值范圍,即可得答案.【詳解】∵點(1,3)在反比例函數圖象下方,∴k>3,∵點(3,2)在反比例函數圖象上方,∴<2,即k<6,∴3<k<6,故選:B.【點睛】本題考查了反比例函數的圖象的性質,熟記k=xy是解題關鍵.7、C【解析】根據一元二次方程的一般形式進行解答即可.【詳解】5x2=6x﹣8化成一元二次方程一般形式是5x2﹣6x+8=0,它的二次項系數是5,一次項系數是﹣6,常數項是8,故選C.【點睛】本題考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常數且a≠0)特別要注意a≠0的條件.這是在做題過程中容易忽視的知識點.在一般形式中ax2叫二次項,bx叫一次項,c是常數項.其中a,b,c分別叫二次項系數,一次項系數,常數項.8、C【解析】解:由圖像可得,當<0或≥2時,≤1.故選C.9、A【分析】根據題目中的函數解析式,可以直接寫出該拋物線的頂點坐標,本題得以解決.【詳解】∵拋物線y=2x2﹣3的對稱軸是y軸,∴該拋物線的頂點坐標為(0,﹣3),故選:A.【點睛】本題考查了拋物線的頂點坐標,找到拋物線的對稱軸是解題的關鍵.10、B【解析】試題分析:如果全班有x名同學,那么每名同學要送出(x-1)張,共有x名學生,那么總共送的張數應該是x(x-1)張,即可列出方程.∵全班有x名同學,∴每名同學要送出(x-1)張;又∵是互送照片,∴總共送的張數應該是x(x-1)=1.故選B考點:由實際問題抽象出一元二次方程.二、填空題(每小題3分,共24分)11、【解析】根據拋物線對稱軸是直線及兩點關于對稱軸直線對稱求出點B的坐標即可.【詳解】解:∵拋物線與軸交于兩點,且點的坐標為,拋物線的對稱軸為直線∴點B的橫坐標為即點B的坐標為【點睛】本題考查拋物線的對稱性,利用數形結合思想確定關于直線對稱的點的坐標是本題的解題關鍵.12、1.5.【分析】在中,根據銳角三角函數正弦定義即可求得答案.【詳解】在中,∵,,∴,∴.故答案為1.5.【點睛】本題考查銳角三角函數,解題的關鍵是熟練運用銳角三角函數的定義,本題屬于基礎題型.13、7【分析】根據配方法,先移項,然后兩邊同時加上4,即可求出n的值.【詳解】解:∵,∴,∴,∴,∴;故答案為:7.【點睛】本題考查了配方法解一元二次方程,解題的關鍵是熟練掌握配方法的步驟.14、5cm【分析】先求出BF、CF的長,利用勾股定理列出關于EF的方程,即可解決問題.【詳解】∵四邊形ABCD為矩形,∴∠B=∠C=90°;由題意得:AF=AD=BC=10,ED=EF,設EF=x,則EC=8?x;由勾股定理得:BF2=AF2?AB2=36,∴BF=6,CF=10?6=4;由勾股定理得:x2=42+(8?x)2,解得:x=5,故答案為:5cm.【點睛】該題主要考查了翻折變換及其應用問題;解題的關鍵是靈活運用勾股定理等幾何知識來分析、判斷、推理或解答.15、;【解析】方程兩邊都乘以(x+2)(x-2)得到x(x+2)-2=(x+2)(x-2),解得x=-1,然后進行檢驗確定分式方程的解.【詳解】解:去分母得x(x+2)-2=(x+2)(x-2),
解得x=-1,
檢驗:當x=-1時,(x+2)(x-2)≠0,
所以原方程的解為x=-1.
故答案為x=-1.【點睛】本題考查解分式方程:先去分母,把分式方程轉化為整式方程,再解整式方程,然后把整式方程的解代入分式方程進行檢驗,最后確定分式方程的解.16、,.【解析】試題分析:,∴,∴,.故答案為,.考點:解一元二次方程-因式分解法.17、24【分析】如圖,由三角函數的定義可得,可得AB=,利用勾股定理可求出AC的長,根據三角形面積公式求出△ABC的面積即可.【詳解】∵,∴AB=,∴()2=AC2+BC2,∵BC=8,∴25AC2=9AC2+9×64,解得:AC=6(負值舍去),∴△ABC的面積是×8×6=24,故答案為:24【點睛】本題考查三角函數的定義,在直角三角形中,銳角的正弦是角的對邊與斜邊的比值;余弦是角的鄰邊與斜邊的比值;正切是角的對邊與鄰邊的比值;熟練掌握三角函數的定義是解題關鍵.18、【分析】首先求得圓錐的底面周長,即扇形的弧長,然后根據弧長的計算公式即可求得圓心角的度數.【詳解】解:圓錐的底面周長是:,設圓心角的度數是,則,解得:.故側面展開圖的圓心角的度數是.故答案是:.【點睛】此題考查了圓錐的計算,正確理解圓錐的側面展開圖與原來的扇形之間的關系是解決本題的關鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.三、解答題(共66分)19、(1)見解析;(2)2.【解析】試題分析:(1)過點O作OM⊥AB,垂足是M.證明OM等于圓的半徑即可;
(2)過點O作ON⊥BE,垂足是N,連接OF,由垂徑定理得出NG=NF=GF.證出四邊形OMBN是矩形,在利用三角函數求得OM和的長,則和即可求得,在中利用勾股定理求得,即可得出的長.試題解析:如圖,∵⊙O與AC相切于點D,∴OD⊥AC,∴∠ADO=∠AMO=90°.∵△ABC是等邊三角形,AO⊥BC,∴∠DAO=∠MAO,∴OM=OD.∴AB與⊙O相切;如圖,過點O作ON⊥BE,垂足是N,連接OF,則NG=NF=GF.∵O是BC的中點,∴OB=2.在Rt△OBM中,∠MBO=60°,∴∠BOM=30°,∴BM=BO=1,∴OM=.∵BE⊥AB,∴四邊形OMBN是矩形,∴ON=BM=1.∵OF=OM=,由勾股定理得NF==,∴GF=2NF=2.20、(1)100、130或1;(2)選擇①或②,理由見解析;(3)見解析;(4)③⑤【分析】(1)根據“等角點”的定義,分類討論即可;(2)①根據在同圓中,弧和弦的關系和同弧所對的圓周角相等即可證明;②弧和弦的關系和圓的內接四邊形的性質即可得出結論;(3)根據垂直平分線的性質、等邊三角形的性質、弧和弦的關系和同弧所對的圓周角相等作圖即可;(4)根據“等角點”和“強等角點”的定義,逐一分析判斷即可.【詳解】(1)(i)若=時,∴==100°(ii)若時,∴(360°-)=130°;(iii)若=時,360°--=1°,綜上所述:=100°、130°或1°故答案為:100、130或1.(2)選擇①:連接∵∴∴∵,∴∴是的等角點.選擇②連接∵∴∴∵四邊形是圓的內接四邊形,∴∵∴∴是的等角點(3)作BC的中垂線MN,以C為圓心,BC的長為半徑作弧交MN與點D,連接BD,根據垂直平分線的性質和作圖方法可得:BD=CD=BC∴△BCD為等邊三角形∴∠BDC=∠BCD=∠DBC=60°作CD的垂直平分線交MN于點O以O為圓心OB為半徑作圓,交AD于點Q,圓O即為△BCD的外接圓∴∠BQC=180°-∠BDC=120°∵BD=CD∴∠BQD=∠CQD∴∠BQA=∠CQA=(360°-∠BQC)=120°∴∠BQA=∠CQA=∠BQC如圖③,點即為所求.(4)③⑤.①如下圖所示,在RtABC中,∠ABC=90°,O為△ABC的內心假設∠BAC=60°,∠ACB=30°∵點O是△ABC的內心∴∠BAO=∠CAO=∠BAC=30°,∠ABO=∠CBO=∠ABC=45°,∠ACO=∠BCO=∠ACB=15°∴∠AOC=180°-∠CAO-∠ACO=135°,∠AOB=180°-∠BAO-∠ABO=105°,∠BOC=180°-∠CBO-∠BCO=120°顯然∠AOC≠∠AOB≠∠BOC,故①錯誤;②對于鈍角等腰三角形,它的外心在三角形的外部,不符合等角點的定義,故②錯誤;③正三角形的每個中心角都為:360°÷3=120°,滿足強等角點的定義,所以正三角形的中心是它的強等角點,故③正確;④由(3)可知,點Q為△ABC的強等角,但Q不在BC的中垂線上,故QB≠QC,故④錯誤;⑤由(3)可知,當的三個內角都小于時,必存在強等角點.如圖④,在三個內角都小于的內任取一點,連接、、,將繞點逆時針旋轉到,連接,∵由旋轉得,,∴是等邊三角形.∴∴∵、是定點,∴當、、、四點共線時,最小,即最小.而當為的強等角點時,,此時便能保證、、、四點共線,進而使最小.故答案為:③⑤.【點睛】此題考查的是新定義類問題、圓的基本性質、圓周角定理、圓的內接多邊形綜合大題,掌握“等角點”和“強等角點”的定義、圓的基本性質、圓周角定理、圓的內接多邊形中心角公式和分類討論的數學思想是解決此題的關鍵.21、(1)見解析;(2)見解析【解析】試題分析:圓內接四邊形的對角互補.直徑所對的圓周角是直角.試題解析:如圖①,即為所求.如圖②,即為所求.點睛:圓內接四邊形的對角互補.直徑所對的圓周角是直角.22、(1),,,;(2)選擇乙,理由見解析【分析】(1)利用平均數的計算公式直接計算平均分即可;將乙的成績從小到大重新排列,用中位數的定義直接寫出中位數即可;根據乙的平均數利用方差的公式計算即可;(2)結合平均數和中位數、眾數、方差三方面的特點進行分析.【詳解】解:(1)甲的平均成績(環),∵乙射擊的成績從小到大從新排列為:3、4、6、7、7、8、8、8、9、10,∴乙射擊成績的中位數(環),又∵乙射擊的成績從小到大從新排列為:3、4、6、7、7、8、8、8、9、10,∴乙射擊成績的眾數:c=8(環)其方差為:=×(16+9+1+0+3+4+9)==;(2)從平均成績看甲、乙二人的成績相等均為7環,從中位數看甲射中7環以上的次數小于乙,從眾數看甲射中7環的次數最多而乙射中8環的次數最多,從方差看甲的成績比乙的成績穩定,綜合以上各因素,若選派一名學生參加比賽的話,可選擇乙參賽,因為乙獲得高分的可能更大.【點睛】本題考查的是條形統計圖和方差、平均數、中位數、眾數的綜合運用.熟練掌握平均數的計算,理解方差的概念,能夠根據計算的數據進行綜合分析.23、(1)畫樹狀圖或列表見解析;(2).【解析】試題分析:根據題意列出表格,找出所有的點Q坐標,根據函數上的點的特征得出符合條件的點,根據概率的計算方法進行計算.試題解析:(1)列表得:(x,y)
1
2
3
4
1
(1,2)
(1,3)
(1,4)
2
(2,1)
(2,3)
(2,4)
3
(3,1)
(3,2)
(3,4)
4
(4,1)
(4,2)
(4,3)
點Q所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農村教育政策的實施困境試題及答案
- 法律基礎知識培訓企業制定與實施新質生產力項目商業計劃書
- 民間傳說故事館企業制定與實施新質生產力項目商業計劃書
- 電影后期制作行業跨境出海項目商業計劃書
- 制漿造紙工程AI智能應用行業跨境出海項目商業計劃書
- 瑜伽與冥想中心企業制定與實施新質生產力項目商業計劃書
- 鐵人中學2023級高二下學期期中考試語文試題
- 福建省福州市某校2024-2025學年高二5月月考語文試題
- 水稻制種產業發展的策略及實施路徑
- 企業風險管控與合規管理全攻略
- DB34T∕ 2426-2015 霍山石斛楓斗加工技術規程
- 機器人工程專業《專業英語與科技論文寫作》教學大綱
- 寧鄉市教師招聘考試題庫2024
- 施工安全的教育培訓記錄表
- DL∕T 5776-2018 水平定向鉆敷設電力管線技術規定
- JGJ124-1999 殯儀館建筑設計規范
- 人工合成石墨導熱材料將成為熱管理市場主流散熱解決方案-未來具有巨大發展空間
- JTS-110-10-2012水運工程標準施工監理招標文件
- 廣東省佛山市2023-2024學年高二下學期7月期末考試地理試題
- JBT 14449-2024 起重機械焊接工藝評定(正式版)
- 網店視覺營銷智慧樹知到期末考試答案章節答案2024年四川商務職業學院
評論
0/150
提交評論