




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第八章
多面體的截面作法和正方體的截面形狀第八章立體幾何初步推論1
經過一條直線和這條直線外一點,有且只有一個平面.αaAααbabaP推論2
經過兩條相交直線,有且只有一個平面.推論3
經過兩條平行直線,有且只有一個平面.作用:確定一個平面.基本事實1
過不在同一條直線上的三個點,有且只有一個平面.平面的基本性質溫故知新基本事實3
如果兩個不重合的平面有一個公共點,
那么它們有且只有一條過該點的公共直線.αlPβ基本事實2
如果一條直線上的兩個點在一個平面內,那么這條直線在這個平面內.αA?B?l溫故知新問題1:如果用一個平面去截幾何體,會得到什么呢?
截面一、截面的定義:
用一個平面去截幾何體,此平面與幾何體的交集叫做這個幾何體的截面.探究新知二、截面的相關要素:
1、此平面與幾何體表面的交集(交線)叫做截線.2、此平面與幾何體的棱的交集(交點)叫做截點探究新知例1:如圖,正方體ABCD―A1B1C1D1中,E、F、G分別在AB、BC、DD1上,求作過E、F、G三點的截面.方法(交線法):該作圖關鍵在于確定截點,有了位于多面體同一表面上的兩個截點即可連結成截線,從而求得截面.探究新知例1:如圖,正方體ABCD―A1B1C1D1中,E、F、G分別在AB、BC、DD1上,求作過E、F、G三點的截面.方法(交線法):該作圖關鍵在于確定截點,有了位于多面體同一表面上的兩個截點即可連結成截線,從而求得截面.作法:(1)在底面AC內,過E、F作直線EF分別與DA、DC的延長線交于L、M.(2)在側面A1D內,連結LG交AA1于K.(3)在側面D1C內,連結GM交CC1于H.(4)連結KE、FH.則五邊形EFHFK即為所求的截面.探究新知例1:如圖,正方體ABCD―A1B1C1D1中,E、F、G分別在AB、BC、DD1上,求作過E、F、G三點的截面.問題2:例1告訴咱們正方體的截面可以是五邊形,那么還有哪些形狀呢?
請每組小組長組織大家組內合作,將大家能找出的截面草圖畫出來,請一位組員分享每個組的學習成果!
探究新知第一種情況:截面為三角形第二種情況:截面為四邊形探究新知第三種情況:截面為五邊形
第四種情況:截面為六邊形歸納總結截面為三角形:截面為四邊形截面為五邊形
截面為六邊形正方體的截面圖形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業旅游示范區開發策略
- 工業污染源控制與環境保護措施
- 工業機器人技術應用與展望
- 工業自動化中圖像處理與機器視覺的結合
- 工業生產中的能源管理與節能技術
- 工業物聯網的發展與挑戰分析
- 工業自動化中的機器學習技術探討
- 工業遺址改造為現代商業街區的實踐案例
- 工業自動化技術及其應用前景
- 工業設計與文化產品創新設計
- 第五單元《面積》(教學設計)-【大單元教學】三年級數學下冊同步備課系列(人教版)
- 閱讀認知策略的跨學科研究框架構建
- 摜蛋考試試題及答案
- GA/T 2159-2024法庭科學資金數據清洗規程
- DB63-T 2129-2023 鹽湖資源開發標準體系
- 企業風險管理-戰略與績效整合(中文版-雷澤佳譯)
- 業務學習踝關節骨折
- 實景演出制作合同協議
- 迅鐳激光切割機操作培訓
- JJF 2241-2025電子停車計時收費表校準規范
- 人文關懷示范病房工作分享課件
評論
0/150
提交評論