




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省長沙市周南教育集團重點中學2024屆中考適應性考試數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.的相反數是()A. B. C.3 D.-32.二次函數(a≠0)的圖象如圖所示,則下列命題中正確的是()A.a>b>cB.一次函數y=ax+c的圖象不經第四象限C.m(am+b)+b<a(m是任意實數)D.3b+2c>03.如圖,是由幾個大小相同的小立方塊所搭幾何體的俯視圖,其中小正方形中的數字表示在該位置的小立方塊的個數,則這個幾何體的主視圖是()A. B. C. D.4.如圖,在△ABC和△BDE中,點C在邊BD上,邊AC交邊BE于點F,若AC=BD,AB=ED,BC=BE,則∠ACB等于()A.∠EDB B.∠BED C.∠EBD D.2∠ABF5.2018年1月,“墨子號”量子衛星實現了距離達7600千米的洲際量子密鑰分發,這標志著“墨子號”具備了洲際量子保密通信的能力.數字7600用科學記數法表示為()A.0.76×104 B.7.6×103 C.7.6×104 D.76×1026.天氣越來越熱,為防止流行病傳播,學校決定用420元購買某種牌子的消毒液,經過還價,每瓶便宜0.5元,結果比用原價購買多買了20瓶,求原價每瓶多少元?設原價每瓶x元,則可列出方程為()A.-=20 B.-=20C.-=20 D.7.下列關于x的方程中一定沒有實數根的是()A. B. C. D.8.如圖,?ABCD對角線AC與BD交于點O,且AD=3,AB=5,在AB延長線上取一點E,使BE=AB,連接OE交BC于F,則BF的長為()A. B. C. D.19.如圖,網格中的每個小正方形的邊長是1,點M,N,O均為格點,點N在⊙O上,若過點M作⊙O的一條切線MK,切點為K,則MK=()A.3 B.2 C.5 D.10.如圖,已知AB是⊙O的直徑,弦CD⊥AB于E,連接BC、BD、AC,下列結論中不一定正確的是()A.∠ACB=90° B.OE=BE C.BD=BC D.二、填空題(共7小題,每小題3分,滿分21分)11.因式分解:a2﹣a=_____.12.在中,若,則的度數是______.13.如圖,每個小正方形邊長為1,則△ABC邊AC上的高BD的長為_____.14.如圖,設△ABC的兩邊AC與BC之和為a,M是AB的中點,MC=MA=5,則a的取值范圍是_____.15.如圖,是用三角形擺成的圖案,擺第一層圖需要1個三角形,擺第二層圖需要3個三角形,擺第三層圖需要7個三角形,擺第四層圖需要13個三角形,擺第五層圖需要21個三角形,…,擺第n層圖需要_____個三角形.16.如圖,已知反比例函數y=(k為常數,k≠0)的圖象經過點A,過A點作AB⊥x軸,垂足為B,若△AOB的面積為1,則k=________________.17.如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規律,經過第2019次運動后,動點P的坐標是_______.三、解答題(共7小題,滿分69分)18.(10分)小明遇到這樣一個問題:已知:.求證:.經過思考,小明的證明過程如下:∵,∴.∴.接下來,小明想:若把帶入一元二次方程(a0),恰好得到.這說明一元二次方程有根,且一個根是.所以,根據一元二次方程根的判別式的知識易證:.根據上面的解題經驗,小明模仿上面的題目自己編了一道類似的題目:已知:.求證:.請你參考上面的方法,寫出小明所編題目的證明過程.19.(5分)為了豐富校園文化,促進學生全面發展.我市某區教育局在全區中小學開展“書法、武術、黃梅戲進校園”活動.今年3月份,該區某校舉行了“黃梅戲”演唱比賽,比賽成績評定為A,B,C,D,E五個等級,該校部分學生參加了學校的比賽,并將比賽結果繪制成如下兩幅不完整的統計圖,請根據圖中信息,解答下列問題.(1)求該校參加本次“黃梅戲”演唱比賽的學生人數;(2)求扇形統計圖B等級所對應扇形的圓心角度數;(3)已知A等級的4名學生中有1名男生,3名女生,現從中任意選取2名學生作為全校訓練的示范者,請你用列表法或畫樹狀圖的方法,求出恰好選1名男生和1名女生的概率.20.(8分)(定義)如圖1,A,B為直線l同側的兩點,過點A作直線1的對稱點A′,連接A′B交直線l于點P,連接AP,則稱點P為點A,B關于直線l的“等角點”.(運用)如圖2,在平面直坐標系xOy中,已知A(2,3),B(﹣2,﹣3)兩點.(1)C(4,32),D(4,22),E(4,12(2)若直線l垂直于x軸,點P(m,n)是點A,B關于直線l的等角點,其中m>2,∠APB=α,求證:tanα2=n(3)若點P是點A,B關于直線y=ax+b(a≠0)的等角點,且點P位于直線AB的右下方,當∠APB=60°時,求b的取值范圍(直接寫出結果).21.(10分)綜合與實踐﹣﹣﹣折疊中的數學在學習完特殊的平行四邊形之后,某學習小組針對矩形中的折疊問題進行了研究.問題背景:在矩形ABCD中,點E、F分別是BC、AD上的動點,且BE=DF,連接EF,將矩形ABCD沿EF折疊,點C落在點C′處,點D落在點D′處,射線EC′與射線DA相交于點M.猜想與證明:(1)如圖1,當EC′與線段AD交于點M時,判斷△MEF的形狀并證明你的結論;操作與畫圖:(2)當點M與點A重合時,請在圖2中作出此時的折痕EF和折疊后的圖形(要求:尺規作圖,不寫作法,保留作圖痕跡,標注相應的字母);操作與探究:(3)如圖3,當點M在線段DA延長線上時,線段C′D'分別與AD,AB交于P,N兩點時,C′E與AB交于點Q,連接MN并延長MN交EF于點O.求證:MO⊥EF且MO平分EF;(4)若AB=4,AD=4,在點E由點B運動到點C的過程中,點D'所經過的路徑的長為.22.(10分)某同學用兩個完全相同的直角三角形紙片重疊在一起(如圖1)固定△ABC不動,將△DEF沿線段AB向右平移.(1)若∠A=60°,斜邊AB=4,設AD=x(0≤x≤4),兩個直角三角形紙片重疊部分的面積為y,試求出y與x的函數關系式;(2)在運動過程中,四邊形CDBF能否為正方形,若能,請指出此時點D的位置,并說明理由;若不能,請你添加一個條件,并說明四邊形CDBF為正方形?23.(12分)如圖所示,正方形網格中,△ABC為格點三角形(即三角形的頂點都在格點上).把△ABC沿BA方向平移后,點A移到點A1,在網格中畫出平移后得到的△A1B1C1;把△A1B1C1繞點A1按逆時針方向旋轉90°,在網格中畫出旋轉后的△A1B2C2;如果網格中小正方形的邊長為1,求點B經過(1)、(2)變換的路徑總長.24.(14分)如圖,AD是△ABC的中線,過點C作直線CF∥AD.(問題)如圖①,過點D作直線DG∥AB交直線CF于點E,連結AE,求證:AB=DE.(探究)如圖②,在線段AD上任取一點P,過點P作直線PG∥AB交直線CF于點E,連結AE、BP,探究四邊形ABPE是哪類特殊四邊形并加以證明.(應用)在探究的條件下,設PE交AC于點M.若點P是AD的中點,且△APM的面積為1,直接寫出四邊形ABPE的面積.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】先求的絕對值,再求其相反數:根據數軸上某個數與原點的距離叫做這個數的絕對值的定義,在數軸上,點到原點的距離是,所以的絕對值是;相反數的定義是:如果兩個數只有符號不同,我們稱其中一個數為另一個數的相反數,特別地,1的相反數還是1.因此的相反數是.故選B.2、D【解析】解:A.由二次函數的圖象開口向上可得a>0,由拋物線與y軸交于x軸下方可得c<0,由x=﹣1,得出=﹣1,故b>0,b=2a,則b>a>c,故此選項錯誤;B.∵a>0,c<0,∴一次函數y=ax+c的圖象經一、三、四象限,故此選項錯誤;C.當x=﹣1時,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此選項錯誤;D.由圖象可知x=1,a+b+c>0①,∵對稱軸x=﹣1,當x=1,y>0,∴當x=﹣3時,y>0,即9a﹣3b+c>0②①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故選項正確;故選D.點睛:此題主要考查了圖象與二次函數系數之間的關系,二次函數與方程之間的轉換,會利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根據圖象判斷其值.3、C【解析】
由俯視圖知該幾何體共2列,其中第1列前一排1個正方形、后1排2個正方形,第2列只有前排2個正方形,據此可得.【詳解】由俯視圖知該幾何體共2列,其中第1列前一排1個正方形、后1排2個正方形,第2列只有前排2個正方形,所以其主視圖為:故選C.【點睛】考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.4、C【解析】
根據全等三角形的判定與性質,可得∠ACB=∠DBE的關系,根據三角形外角的性質,可得答案.【詳解】在△ABC和△DEB中,,所以△ABC△BDE(SSS),所以∠ACB=∠DBE.故本題正確答案為C.【點睛】.本題主要考查全等三角形的判定與性質,熟悉掌握是關鍵.5、B【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:7600=7.6×103,故選B.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.6、C【解析】
關鍵描述語是:“結果比用原價多買了1瓶”;等量關系為:原價買的瓶數-實際價格買的瓶數=1.【詳解】原價買可買瓶,經過還價,可買瓶.方程可表示為:﹣=1.故選C.【點睛】考查了由實際問題抽象出分式方程.列方程解應用題的關鍵步驟在于找相等關系.本題要注意討價前后商品的單價的變化.7、B【解析】
根據根的判別式的概念,求出△的正負即可解題.【詳解】解:A.x2-x-1=0,△=1+4=50,∴原方程有兩個不相等的實數根,B.,△=36-144=-1080,∴原方程沒有實數根,C.,,△=10,∴原方程有兩個不相等的實數根,D.,△=m2+80,∴原方程有兩個不相等的實數根,故選B.【點睛】本題考查了根的判別式,屬于簡單題,熟悉根的判別式的概念是解題關鍵.8、A【解析】
首先作輔助線:取AB的中點M,連接OM,由平行四邊形的性質與三角形中位線的性質,即可求得:△EFB∽△EOM與OM的值,利用相似三角形的對應邊成比例即可求得BF的值.【詳解】取AB的中點M,連接OM,∵四邊形ABCD是平行四邊形,∴AD∥BC,OB=OD,∴OM∥AD∥BC,OM=AD=×3=,∴△EFB∽△EOM,∴,∵AB=5,BE=AB,∴BE=2,BM=,∴EM=+2=,∴,∴BF=,故選A.【點睛】此題考查了平行四邊形的性質、相似三角形的判定與性質等知識.解此題的關鍵是準確作出輔助線,合理應用數形結合思想解題.9、B【解析】
以OM為直徑作圓交⊙O于K,利用圓周角定理得到∠MKO=90°.從而得到KM⊥OK,進而利用勾股定理求解.【詳解】如圖所示:MK=.故選:B.【點睛】考查了切線的性質:圓的切線垂直于經過切點的半徑.若出現圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.10、B【解析】
根據垂徑定理及圓周角定理進行解答即可.【詳解】∵AB是⊙O的直徑,∴∠ACB=90°,故A正確;∵點E不一定是OB的中點,∴OE與BE的關系不能確定,故B錯誤;∵AB⊥CD,AB是⊙O的直徑,∴,∴BD=BC,故C正確;∴,故D正確.故選B.【點睛】本題考查的是垂徑定理,熟知平分弦的直徑平分這條弦,并且平分弦所對的兩條弧是解答此題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、a(a﹣1)【解析】
直接提取公因式a,進而分解因式得出答案【詳解】a2﹣a=a(a﹣1).故答案為a(a﹣1).【點睛】此題考查公因式,難度不大12、【解析】
先根據非負數的性質求出,,再由特殊角的三角函數值求出與的值,根據三角形內角和定理即可得出結論.【詳解】在中,,,,,,,故答案為:.【點睛】本題考查了非負數的性質以及特殊角的三角函數值,熟練掌握特殊角的三角函數值是解題的關鍵.13、【解析】試題分析:根據網格,利用勾股定理求出AC的長,AB的長,以及AB邊上的高,利用三角形面積公式求出三角形ABC面積,而三角形ABC面積可以由AC與BD乘積的一半來求,利用面積法即可求出BD的長:根據勾股定理得:,由網格得:S△ABC=×2×4=4,且S△ABC=AC?BD=×5BD,∴×5BD=4,解得:BD=.考點:1.網格型問題;2.勾股定理;3.三角形的面積.14、10<a≤10.【解析】
根據題設知三角形ABC是直角三角形,由勾股定理求得AB的長度及由三角形的三邊關系求得a的取值范圍;然后根據題意列出二元二次方程組,通過方程組求得xy的值,再把該值依據根與系數的關系置于一元二次方程z2-az+=0中,最后由根的判別式求得a的取值范圍.【詳解】∵M是AB的中點,MC=MA=5,∴△ABC為直角三角形,AB=10;∴a=AC+BC>AB=10;令AC=x、BC=y.∴,∴xy=,∴x、y是一元二次方程z2-az+=0的兩個實根,∴△=a2-4×≥0,即a≤10.綜上所述,a的取值范圍是10<a≤10.故答案為10<a≤10.【點睛】本題綜合考查了勾股定理、直角三角形斜邊上的中線及根的判別式.此題的綜合性比較強,解題時,還利用了一元二次方程的根與系數的關系、根的判別式的知識點.15、n2﹣n+1【解析】
觀察可得,第1層三角形的個數為1,第2層三角形的個數為3,比第1層多2個;第3層三角形的個數為7,比第2層多4個;…可得,每一層比上一層多的個數依次為2,4,6,…據此作答.【詳解】觀察可得,第1層三角形的個數為1,第2層三角形的個數為22?2+1=3,第3層三角形的個數為32?3+1=7,第四層圖需要42?4+1=13個三角形擺第五層圖需要52?5+1=21.那么擺第n層圖需要n2?n+1個三角形。故答案為:n2?n+1.【點睛】本題考查了規律型:圖形的變化類,解題的關鍵是由圖形得到一般規律.16、-1【解析】試題解析:設點A的坐標為(m,n),因為點A在y=的圖象上,所以,有mn=k,△ABO的面積為=1,∴=1,∴=1,∴k=±1,由函數圖象位于第二、四象限知k<0,∴k=-1.考點:反比例外函數k的幾何意義.17、(2019,2)【解析】
分析點P的運動規律,找到循環次數即可.【詳解】分析圖象可以發現,點P的運動每4次位置循環一次.每循環一次向右移動四個單位.∴2019=4×504+3當第504循環結束時,點P位置在(2016,0),在此基礎之上運動三次到(2019,2)故答案為(2019,2).【點睛】本題是規律探究題,解題關鍵是找到動點運動過程中,每運動多少次形成一個循環.三、解答題(共7小題,滿分69分)18、證明見解析【解析】解:∵,∴.∴.∴是一元二次方程的根.∴,∴.19、(1)50;(2)115.2°;(3)12【解析】(1)先求出參加本次比賽的學生人數;(2)由(1)求出的學生人數,即可求出B等級所對應扇形的圓心角度數;(3)首先根據題意列表或畫出樹狀圖,然后由求得所有等可能的結果,再利用概率公式即可求得答案.解:(1)參加本次比賽的學生有:4÷8%=50(人)(2)B等級的學生共有:50-4-20-8-2=16(人).∴所占的百分比為:16÷50=32%∴B等級所對應扇形的圓心角度數為:360°×32%=115.2°.(3)列表如下:男女1女2女3男﹣﹣﹣(女,男)(女,男)(女,男)女1(男,女)﹣﹣﹣(女,女)(女,女)女2(男,女)(女,女)﹣﹣﹣(女,女)女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12種等可能的結果,選中1名男生和1名女生結果的有6種.∴P(選中1名男生和1名女生)=6“點睛”本題考查了列表法與樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結果求出n,再從中選出符合事件A或B的結果數目m,然后根據概率公式求出事件A或B的概率.通過扇形統計圖求出扇形的圓心角度數,應用數形結合的思想是解決此類題目的關鍵.20、(1)C(2)n2(3)b<﹣735且b≠﹣2【解析】
(1)先求出B關于直線x=4的對稱點B′的坐標,根據A、B′的坐標可得直線AB′的解析式,把x=4代入求出P點的縱坐標即可得答案;(2)如圖:過點A作直線l的對稱點A′,連A′B′,交直線l于點P,作BH⊥l于點H,根據對稱性可知∠APG=A′PG,由∠AGP=∠BHP=90°可證明△AGP∽△BHP,根據相似三角形對應邊成比例可得m=2根據外角性質可知∠A=∠A′=α2根據對稱性質可證明△ABQ是等邊三角形,即點Q為定點,若直線y=ax+b(a≠0)與圓相切,易得P、Q重合,所以直線y=ax+b(a≠0)過定點Q,連OQ,過點A、Q分別作AM⊥y軸,QN⊥y軸,垂足分別為M、N,可證明△AMO∽△ONQ,根據相似三角形對應邊成比例可得ON、NQ的長,即可得Q點坐標,根據A、B、Q的坐標可求出直線AQ、BQ的解析式,根據P與A、B重合時b的值求出b的取值范圍即可.【詳解】(1)點B關于直線x=4的對稱點為B′(10,﹣3),∴直線AB′解析式為:y=﹣34當x=4時,y=32故答案為:C(2)如圖,過點A作直線l的對稱點A′,連A′B′,交直線l于點P作BH⊥l于點H∵點A和A′關于直線l對稱∴∠APG=∠A′PG∵∠BPH=∠A′PG∴∠APG=∠BPH∵∠AGP=∠BHP=90°∴△AGP∽△BHP∴AGBH=GP∴mn=23,即m=23∵∠APB=α,AP=AP′,∴∠A=∠A′=α2在Rt△AGP中,tanα2=(3)如圖,當點P位于直線AB的右下方,∠APB=60°時,點P在以AB為弦,所對圓周為60°,且圓心在AB下方若直線y=ax+b(a≠0)與圓相交,設圓與直線y=ax+b(a≠0)的另一個交點為Q由對稱性可知:∠APQ=∠A′PQ,又∠APB=60°∴∠APQ=∠A′PQ=60°∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°∴∠BAQ=60°=∠AQB=∠ABQ∴△ABQ是等邊三角形∵線段AB為定線段∴點Q為定點若直線y=ax+b(a≠0)與圓相切,易得P、Q重合∴直線y=ax+b(a≠0)過定點Q連OQ,過點A、Q分別作AM⊥y軸,QN⊥y軸,垂足分別為M、N∵A(2,3),B(﹣2,﹣3)∴OA=OB=7∵△ABQ是等邊三角形∴∠AOQ=∠BOQ=90°,OQ=3OB=∴∠AOM+∠NOD=90°又∵∠AOM+∠MAO=90°,∠NOQ=∠MAO∵∠AMO=∠ONQ=90°∴△AMO∽△ONQ∴AMON∴20N∴ON=23,NQ=3,∴Q點坐標為(3,﹣23)設直線BQ解析式為y=kx+b將B、Q坐標代入得-3解得k=-3∴直線BQ的解析式為:y=﹣35設直線AQ的解析式為:y=mx+n,將A、Q兩點代入3=2m+n解得m=-33∴直線AQ的解析式為:y=﹣33x+7若點P與B點重合,則直線PQ與直線BQ重合,此時,b=﹣73若點P與點A重合,則直線PQ與直線AQ重合,此時,b=73又∵y=ax+b(a≠0),且點P位于AB右下方,∴b<﹣735且b≠﹣23或b>【點睛】本題考查對稱性質、相似三角形的判定與性質、根據待定系數法求一次函數解析式及銳角三角函數正切的定義,熟練掌握相關知識是解題關鍵.21、(1)△MEF是等腰三角形(2)見解析(3)證明見解析(4)【解析】
(1)由AD∥BC,可得∠MFE=∠CEF,由折疊可得,∠MEF=∠CEF,依據∠MFE=∠MEF,即可得到ME=MF,進而得出△MEF是等腰三角形;(2)作AC的垂直平分線,即可得到折痕EF,依據軸對稱的性質,即可得到D'的位置;(3)依據△BEQ≌△D'FP,可得PF=QE,依據△NC'P≌△NAP,可得AN=C'N,依據Rt△MC'N≌Rt△MAN,可得∠AMN=∠C'MN,進而得到△MEF是等腰三角形,依據三線合一,即可得到MO⊥EF且MO平分EF;(4)依據點D'所經過的路徑是以O為圓心,4為半徑,圓心角為240°的扇形的弧,即可得到點D'所經過的路徑的長.【詳解】(1)△MEF是等腰三角形.理由:∵四邊形ABCD是矩形,∴AD∥BC,∴∠MFE=∠CEF,由折疊可得,∠MEF=∠CEF,∴∠MFE=∠MEF,∴ME=MF,∴△MEF是等腰三角形.(2)折痕EF和折疊后的圖形如圖所示:(3)如圖,∵FD=BE,由折疊可得,D'F=DF,∴BE=D'F,在△NC'Q和△NAP中,∠C'NQ=∠ANP,∠NC'Q=∠NAP=90°,∴∠C'QN=∠APN,∵∠C'QN=∠BQE,∠APN=∠D'PF,∴∠BQE=∠D'PF,在△BEQ和△D'FP中,,∴△BEQ≌△D'FP(AAS),∴PF=QE,∵四邊形ABCD是矩形,∴AD=BC,∴AD﹣FD=BC﹣BE,∴AF=CE,由折疊可得,C'E=EC,∴AF=C'E,∴AP=C'Q,在△NC'Q和△NAP中,,∴△NC'P≌△NAP(AAS),∴AN=C'N,在Rt△MC'N和Rt△MAN中,,∴Rt△MC'N≌Rt△MAN(HL),∴∠AMN=∠C'MN,由折疊可得,∠C'EF=∠CEF,∵四邊形ABCD是矩形,∴AD∥BC,∴∠AFE=∠FEC,∴∠C'EF=∠AFE,∴ME=MF,∴△MEF是等腰三角形,∴MO⊥EF且MO平分EF;(4)在點E由點B運動到點C的過程中,點D'所經過的路徑是以O為圓心,4為半徑,圓心角為240°的扇形的弧,如圖:故其長為L=.故答案為.【點睛】此題是四邊形綜合題,主要考查了折疊問題與菱形的判定與性質、弧長計算公式,等腰三角形的判定與性質以及全等三角形的判定與性質的綜合應用,熟練掌握等腰三角形的判定定理和性質定理是解本題的關鍵.22、(1)y=(0≤x≤4);(2)不能為正方形,添加條件:AC=BC時,當點D運動到AB中點位置時四邊形CDBF為正方形.【解析】分析:(1)根據平移的性質得到DF∥AC,所以由平行線的性質、勾股定理求得GD=,BG==,所以由三角形的面積公式列出函數關系式;(2)不能為正方形,添加條件:AC=BC時,點D運動到AB中點時,四邊形CDBF為正方形;當D運動到AB中點時,四邊形CDBF是菱形,根據“直角三角形斜邊上的中線等于斜邊的一半”推知CD=AB,BF=DE,所以AD=CD=BD=CF,又有BE=AD,則CD=BD=BF=CF,故四邊形CDBF是菱形,根據有一內角為直角的菱形是正方形來添加條件.詳解:(1)如圖(1)∵DF∥AC,∴∠DGB=∠C=90°,∠GDB=∠A=60°,∠GBD=30°∵BD=4﹣x,∴GD=,BG==y=S△BDG=××=(0≤x≤4);(2)不能為正方形,添加
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年德語TestDaF考試模擬試卷閱讀理解難點分析與對策
- 2025年采購師(一級)實務操作考試試卷
- 2025電子商務師(高級)考試試卷:電商數據可視化與商業智能分析試題
- 2025年安全工程師考試事故案例分析模擬試卷
- 2025年初中歷史七年級下冊階段檢測試卷:歷史學科教學方法
- 2025年電子商務師(初級)職業技能鑒定試卷:電子商務數據分析競賽評分標準試題
- 2025年保育員(初級)實操技能試卷:幼兒教育信息化技術與應用案例分析
- 便利店行業2025年轉型升級中的智能物流配送成本控制策略研究報告001
- 2025年航空航天零部件制造高精度加工技術發展趨勢報告
- 2025年不銹鋼絲網項目規劃申請報告
- 2025年高考政治一輪復習:統編版必修3《政治與法治》必背考點知識講義
- 民政統計信息管理系統培訓手冊街鄉鎮
- 中職英語新課標詞匯表
- 2024秋期國家開放大學《國際法》一平臺在線形考(形考任務1至5)試題及答案
- 天翼云從業者認證考試題庫及答案
- T-CEC 153-2018并網型微電網的負荷管理技術導則
- 超聲科晉升主任(副主任)醫師超聲診斷子宮癌肉瘤病例報告專題分析
- 《食品經營許可證》申請書(范本)
- 2024至2030年中國博物館行業現狀調研及未來發展規劃分析報告
- 廣東省揭陽市2024年小升初語文真題試卷及答案
- 化工過程安全管理導則培訓
評論
0/150
提交評論